New perspectives in hermitian K-theory III

Yonatan Harpaz

CNRS, Université Paris 13

New perspectives on K- and L-theory, Sep. 2020

Joint work with Baptiste Calmès, Emanuele Dotto, Fabian Hebestreit, Markus Land, Kristian Moi, Denis Nardin, Thomas Nikolaus and Wolfgang Steimle.

Recollection

- A Poincaré ∞ -category is a stable ∞ -category $\mathcal C$ equipped with a quadratic functor $\Omega: \mathcal C^{\mathrm{op}} \to \mathcal Sp$ satisfying a suitable non-degeneracy condition, which results in a duality $D_{\Omega}: \mathcal C^{\mathrm{op}} \xrightarrow{\simeq} \mathcal C$.
- For a ring R and an invertible module with involution M we have a sequence of Poincaré structures on the stable ∞ -category $\mathcal{D}^{p}(R)$

$${{\Omega}_{M}^{\mathrm{q}}}\Rightarrow{{\Omega}_{M}^{\mathrm{gq}}}\Rightarrow{{\Omega}_{M}^{\mathrm{ge}}}\Rightarrow{{\Omega}_{M}^{\mathrm{gs}}}\Rightarrow{{\Omega}_{M}^{\mathrm{s}}}$$

- For a Poincaré ∞ -category we can define its Grothendieck-Witt spectrum GW and its Grothendieck-Witt space $\mathcal{GW} = \Omega^\infty$ GW by means of cobordism ∞ -categories.
- The functors GW and \mathcal{GW} are both additive they send split Poincaré-Verdier squares to pullback squares.
- The Grothendieck-Witt space is group-like, and so we can consider it as taking values in E_{∞} -groups.
- \mathcal{GW} and GW are the initial functors with these properties receiving a map from Pn and $\Sigma^{\infty}\mathrm{Pn}$, respectively.

The L-theory space

Recall from Markus' talks the definition of the L-theory space.

Definition

For (\mathcal{C}, Ω) Poincaré, let $\rho_n(\mathcal{C}, \Omega) = (\operatorname{Fun}(\mathfrak{T}_n^{\mathrm{op}}, \mathcal{C}), \Omega_{[n]})$, where

- \mathcal{T}_n is the poset of non-empty subsets of [n].
- $\Omega_{[n]}$ is the functor which sends $\varphi \colon \mathfrak{T}_n^{\mathrm{op}} \to \mathfrak{C}$ to $\lim_{\mathfrak{T}_n} \Omega \circ \varphi$.

The Poincaré ∞ -categories $\rho_n(\mathcal{C}, \Omega)$ fit into a simplicial object $\rho_{\bullet}(\mathcal{C}, \Omega)$. For a functor $\mathcal{F}: \operatorname{Cat}^{\operatorname{p}}_{\infty} \to \mathcal{E}$ with \mathcal{E} admitting geometric realizations define

$$\rho \mathcal{F} \colon \mathrm{Cat}^\mathrm{p}_\infty \to \mathcal{E} \qquad \rho \mathcal{F}(\mathcal{C}, \mathfrak{P}) = \big| \mathcal{F} \rho_\bullet(\mathcal{C}, \mathfrak{P}) \big|.$$

Definition (Lurie-Ranicki)

The L-space of $(\mathfrak{C}, \mathfrak{P})$ is define by $\mathcal{L} \coloneqq \rho \mathrm{Pn}$.

- ullet L is a group-like Verdier-localizing functor from $\mathrm{Cat}^\mathrm{p}_\infty$ to spaces.
- For $n \ge 0$ we have a natural isomorphism $\pi_n \mathcal{L}(\mathcal{C}, \Omega) \cong \mathsf{L}_n(\mathcal{C}, \Omega)$ (see Markus's talks).

From \mathcal{GW} to \mathcal{L}

By the universal property of \mathcal{GW} , the map $\operatorname{Pn} \to \mathcal{L}$ factors through an essentially unique map $\mathcal{GW} \to \mathcal{L}$. This map can also be constructed explicitly as follows:

For $n \in \Delta$ consider the natural map of posets

$$\eta_n: \mathfrak{T}_n^{\mathrm{op}} \to \mathsf{TwAr}[n] \qquad [n] \supseteq T \mapsto \min(T) \le \max(T).$$

⇒ restriction yields a hermitian (and in fact Poincaré) functor

$$Q_n(\mathcal{C}, \Omega) \to \rho_n(\mathcal{C}, \Omega).$$

This map is an equivalence for n = 0, 1.

For n = 2 it sends

From \mathcal{GW} to \mathcal{L}

Obtain a map

$$|\mathrm{Cob}(\mathcal{C}, \Omega)| = |\mathrm{Pn}\, \mathsf{Q}_{\bullet}(\mathcal{C}, \Omega^{[1]})| \to |\mathrm{Pn}\rho_{\bullet}(\mathcal{C}, \Omega^{[1]})| = \mathcal{L}(\mathcal{C}, \Omega^{[1]})$$

and hence a map

$$\mathfrak{GW}(\mathfrak{C},\mathfrak{P}) \to \Omega\,\mathcal{L}(\mathfrak{C},\mathfrak{P}^{[1]}) \xrightarrow{\partial} \mathcal{L}(\mathfrak{C},\mathfrak{P})$$

where ∂ is the boundary map coming from the metabolic sequence.

Bordism invariance

A fundamental property of \mathcal{L} is that it is *bordism invariant*. What does that mean?

Internal functor categories

For $(\mathfrak{C}, \mathfrak{P}), (\mathfrak{D}, \Phi)$ two hermitian ∞ -categories define

$$\mathsf{Fun}^{\mathsf{ex}}((\mathcal{C}, \Omega), (\mathcal{D}, \Phi)) \coloneqq (\mathsf{Fun}^{\mathsf{ex}}(\mathcal{C}, \mathcal{D}), \mathsf{nat}^{\Phi}_{\Omega})$$

where $\operatorname{Fun}^{\operatorname{ex}}(\mathcal{C}, \mathcal{D})$ is the ∞ -category of exact functors $\mathcal{C} \to \mathcal{D}$, and $\operatorname{nat}_{\mathbb{Q}}^{\Phi}(f) = \operatorname{nat}(\mathcal{L}, f^*\Phi)$.

- Hermitian objects in $\operatorname{Fun}^{\operatorname{ex}}((\mathcal{C}, \Omega), (\mathcal{D}, \Phi))$ correspond to hermitian functors $(f, \eta): (\mathcal{C}, \Omega) \to (\mathcal{D}, \Phi)$.
- If (\mathcal{C}, Ω) and (\mathcal{D}, Φ) are Poincaré then $\mathsf{Fun}^\mathsf{ex}((\mathcal{C}, \Omega), (\mathcal{D}, \Phi))$ is Poincaré and its Poincaré objects correspond to Poincaré functors from (\mathcal{C}, Ω) to (\mathcal{D}, Φ) .

Bordism equivalences

A fundamental property of \mathcal{L} is that it is *bordism invariant*. What does that mean?

Definition

- Two Poincaré functors $(f,\eta),(g,\vartheta)\colon (\mathcal{C},\Omega)\to (\mathcal{D},\Phi)$ are said to be *cobordant* if there is a cobordism between them when considered as Poincaré objects in $\mathsf{Fun}^\mathsf{ex}((\mathcal{C},\Omega),(\mathcal{D},\Phi))$.
- A Poincaré functor (f,η) : $(\mathfrak{C},\Omega) \to (\mathfrak{D},\Phi)$ is called a *bordism* equivalence there exists a Poincaré functor (g,θ) : $(\mathfrak{D},\Phi) \to (\mathfrak{C},\Omega)$ such that $(f,\eta) \circ (g,\theta)$ and $(g,\theta) \circ (f,\eta)$ are cobordant to the respective identifies.

Example

If (\mathcal{C}, Ω) is a Poincaré ∞ -category and $\mathcal{A} \subseteq \mathcal{C}$ is an isotropic subcategory then the Poincaré functor $\mathsf{Hlgy}(\mathcal{A}) \to (\mathcal{C}, \Omega)$ is a bordism equivalence.

Bordism invariant functors

Definition

A functor $\mathfrak{F}: \mathrm{Cat}^p_\infty \to \mathcal{E}$ is called *bordism invariant* if it sends bordism equivalences to equivalences.

For group-like additive functors bordism invariance admits several equivalent characterizations:

Lemma

For $\mathfrak{F}{:}\operatorname{Cat}^p_\infty\to \mathcal{E}$ a group-like additive functor the following are equivalent:

- ⊕ Y vanishes on metabolic Poincaré ∞-categories, i.e., those that admit a Lagrangian.
- **3** \mathcal{F} vanishes on $\mathsf{Hyp}(\mathcal{C})$ for every $\mathcal{C} \in \mathsf{Cat}^{ex}_{\infty}$.

Proof.

(1) implies (2) implies (3) without the assumptions on \mathcal{F} . To prove (3) \Rightarrow (1) one uses the isotropic decomposition theorem.

Bordism invariance of \mathcal{L}

 $\mathcal L$ is group-like and Verdier-localizing. To see that it is bordism invariant it hence suffices to check that it vanishes on hyperbolic Poincaré ∞ -categories.

The simplicial space

$$\operatorname{Pn}(\rho_{\bullet}\operatorname{\mathsf{Hyp}}(\mathfrak{C})) \simeq \operatorname{Pn}\operatorname{\mathsf{Hyp}}(\operatorname{\mathsf{Fun}}(\mathfrak{T}^{\operatorname{op}}_{\bullet},\mathfrak{C})) \simeq \operatorname{\mathsf{Fun}}(\mathfrak{T}^{\operatorname{op}}_{\bullet},\mathfrak{C})^{\simeq}$$

is the simplicial subdivision of $\operatorname{Fun}(\Delta^{\bullet}, \mathfrak{C})^{\sim}$, and hence

$$\mathcal{L}(\mathsf{Hyp}(\mathcal{C})) \simeq |\operatorname{\mathsf{Fun}}(\mathfrak{T}^{\operatorname{op}}_{\bullet}, \mathcal{C})^{\cong}| \simeq |\operatorname{\mathsf{Fun}}(\Delta^{\bullet}, \mathcal{C})^{\cong}| \simeq |\mathcal{C}| \simeq *$$

since ${\mathcal C}$ has a zero object.

An L-theory spectrum

Recall from the previous talk the operation $\mathcal{F}\mapsto\mathbb{C}\mathrm{ob}^{\mathcal{F}}$ which sends a group-like additive functor $\mathcal{F}\colon\mathrm{Cat}^p_\infty\to\mathcal{S}$ to an additive functor $\mathcal{F}\colon\mathrm{Cat}^p_\infty\to\mathcal{S}p$ such that $\Omega^\infty\mathbb{C}\mathrm{ob}^{\mathcal{F}}\simeq\mathcal{F}$.

Definition

We define the L-spectrum of a Poincaré ∞-category by

$$\mathsf{L}(\mathfrak{C}, \mathfrak{P}) = \mathbb{C}\mathrm{ob}^{\mathcal{L}}(\mathfrak{C}, \mathfrak{P})$$

- L is by construction an additive functor to spectra (automatically group-like since Sp is stable).
- The Q-construction preserves hyperbolic Poincaré ∞-categories ⇒ the functor L is bordism invariant.
- The map $\mathcal{GW} \to \mathcal{L}$ induces a map $GW \to L$.

Shifts of L-theory

Applying L to the metabolic sequence yields a fiber sequence

$$L(\mathcal{C}, \Omega^{[-1]}) \to L(\mathsf{Met}(\mathcal{C}, \Omega)) \to L(\mathcal{C}, \Omega).$$

But $L(\mathsf{Met}(\mathcal{C}, \Omega)) \simeq 0$, so $L(\mathcal{C}, \Omega^{[-1]}) \simeq \Omega L(\mathcal{C}, \Omega)$. By induction:

$$L(\mathcal{C}, \Omega^{[-n]}) \simeq \Omega^n L(\mathcal{C}, \Omega)$$
 $n \in \mathbb{Z}$.

Conclusion

 $L(\mathcal{C}, \Omega)$ can also be described as the $\Omega\text{-spectrum}$ with components

$$\mathcal{L}(\mathcal{C}, \Omega), \mathcal{L}(\mathcal{C}, \Omega^{[1]}), \mathcal{L}(\mathcal{C}, \Omega^{[2]}), ...,$$

with the structure maps $\mathcal{L}(\mathcal{C}, \Omega^{[n]}) \xrightarrow{\simeq} \Omega \mathcal{L}(\mathcal{C}, \Omega^{[n+1]})$ coming from the metabolic sequence.

This observation holds for any group-like additive functor $\mathcal{F} \colon Cat_{\infty}^p \to \mathcal{S}$. In fact, bordism invariant group-like additive functors to spaces admit an essentially unique bordism invariant additive lift to spectra, given by the above formula.

Bordification of additive functors

Definition

Let $b\colon \mathcal{F} \to \mathcal{F}'$ be a map between additive functors $\mathrm{Cat}^p_\infty \to \mathcal{S}p$. We say that b exhibits \mathcal{F}' as the *bordification* of \mathcal{F} if \mathcal{F}' is bordism invariant and for every other bordism invariant additive functor $\mathcal{G}\colon \mathrm{Cat}^p_\infty \to \mathcal{S}p$ the induced map

$$\mathsf{nat}(\mathfrak{F}',\mathfrak{G}) \to \mathsf{nat}(\mathfrak{F},\mathfrak{G})$$

is an equivalence.

Define $GW^{\text{bord}}: Cat^p_{\infty} \to \mathcal{S}p$ to be the cofiber of the map

$$\mathsf{K}_{\mathrm{hC}_2} \to \mathsf{GW}$$

induced from the C_2 -equivariant hyperbolic map $hyp: \mathsf{K} \to \mathsf{GW}$. Note that $\mathsf{GW}^{\mathrm{bord}}$ is additive since $\mathcal{S}p$ is stable.

Lemma

The map $GW \to GW^{\mathrm{bord}}$ exhibits GW^{bord} as the bordification of GW.

Lemma

The map $GW \to GW^{\mathrm{bord}}$ exhibits GW^{bord} as the bordification of GW.

Proof.

We first check that $\mathsf{GW}^\mathrm{bord}$ is bordism invariant. Since it is an additive functor to spectra it will suffice to check that it vanishes on $\mathsf{Hyp}(\mathfrak{C})$ for every \mathfrak{C} . Indeed, this is because the map

$$\mathsf{K}(\mathfrak{C} \times \mathfrak{C}^{\mathrm{op}})_{\mathrm{hC}_2} = \big[\mathsf{K}(\mathfrak{C}) \times \mathsf{K}(\mathfrak{C})\big]_{\mathrm{hC}_2} \to \mathsf{K}(\mathfrak{C}) = \mathsf{GW}(\mathsf{Hyp}(\mathfrak{C}))$$

is an equivalence. We now check that $\mathsf{GW} \to \mathsf{GW}^\mathrm{bord}$ induces an equivalence on mapping spectra into a bordism invariant additive test functor $\mathfrak G.$ For this it suffices to show that $\mathsf{K}_{\mathrm{hC}_2}$ maps trivially to any bordism invariant functor, or equivalently, that $\mathsf K$ has that property.

- Fact: the functor $(\mathcal{C}, \Omega) \mapsto \mathsf{Hyp}(\mathcal{C})$ from $\mathrm{Cat}^\mathrm{p}_\infty$ to $\mathrm{Cat}^\mathrm{p}_\infty$ is adjoint to itself in both directions
- \Rightarrow maps from K = GW \circ Hyp to $\mathcal G$ are like maps from GW to $\mathcal G \circ$ Hyp = 0.

L-theory as bordification

We claim that $\mathsf{GW}^{\mathrm{bord}}$ is actually equivalent to L.

Two birds with one stone

This gives a universal characterization for L, and at the same time puts L in an exact sequence with GW and $K_{\rm hC_2}$.

We proceed in several steps:

- L is naturally equivalent to ρGW = |GW(ρ_•(-))|, such that the map GW → L identifies with the one induced by the inclusion of zero simplices. This is proven using the commutativity ρ_n Q_m ≃ Q_m ρ_n.
- For $\mathcal G$ an additive bordism invariant functor the map $\mathcal G \to \rho \mathcal G$ is an equivalence. This follows from the fact that each simplicial structure map $\rho_n(\mathcal C, \mathcal Y) \to \rho_m(\mathcal C, \mathcal Y)$ is a bordism equivalence.
- The functor ρ K is trivial. Indeed, by the commutativity of the ρ and hyperbolic constructions, ρ K(\mathcal{C}) $\simeq \rho$ GW(Hyp(\mathcal{C})) \simeq L(Hyp(\mathcal{C})) \simeq 0.

Proposition

There is a natural equivalence $GW^{bord} \simeq L$.

Proof.

Apply ρ to the sequence

$$\mathsf{K}_{\mathrm{hC}_2} \to \mathsf{GW} \to \mathsf{GW}^\mathrm{bord}$$

to obtain a diagram

where we identified ρ GW \simeq L by the first point in the previous slide.

The universal property of L-theory

Corollary

The natural transformation $GW \Rightarrow L$ exhibits L as the initial bordism invariant additive functor under GW.

Corollary (Universality for L-theory)

The natural transformation $\Sigma^{\infty} Pn \Rightarrow L$ exhibits L as the initial bordism invariant additive functor under $\Sigma^{\infty} Pn$.

Long exact sequences of GW and L-groups

Corollary (The fundamental fiber sequence)

The natural maps

$$\mathsf{K}_{hC_2} \to \mathsf{GW} \to \mathsf{L}$$

form a fiber sequence of additive functors $Cat^{p}_{\infty} \to Sp$.

- Since K and L are Verdier-localizing it follows that GW is Verdier localizing as well.
- Gives a long exact sequence in homotopy groups

$$\cdots \to \pi_n \mathsf{K}(\mathcal{C})_{\mathrm{hC}_2} \to \mathsf{GW}_n(\mathcal{C}, \Omega) \to \mathsf{L}_n(\mathcal{C}, \Omega) \to$$
$$\pi_{n-1} \mathsf{K}(\mathcal{C})_{\mathrm{hC}_2} \to \mathsf{GW}_{n-1}(\mathcal{C}, \Omega) \to \mathsf{L}_{n-1}(\mathcal{C}, \Omega) \to \cdots$$

The Tate square

Applications

Extending the classical exact sequence

For R a ring and M an invertible module with involution over R, recall from the first talk the exact sequence

$$K_0(R)_{C_2} \to GW_0^q(R, M) \to L_0^q(R, M) = W_0^q(R, M)$$

When 2 is invertible in R

- The quadratic, symmetric, and all the genuine structures we described on $\mathcal{D}^p(R)$ are all the same, call them Ω_M .
- In this case $\mathrm{GW}(\mathfrak{D}^\mathrm{p}(R), \Omega_M)$ coincides with Schlichting's GW-spectrum, and $\mathrm{L}(\mathfrak{D}^\mathrm{p}(R), \Omega_M)$ coincides with Ranicki's quadratic L-spectrum.
- The above sequence extends to a long exact sequence involving GW-groups and L-groups as in the previous slide.
- This was known in this case by the work of Schlichting.

Extending the classical exact sequence

For R a ring and M an invertible module with involution over R, recall from the first talk the exact sequence

$$K_0(R)_{C_2} \to GW_0^q(R, M) \to L_0^q(R, M) = W_0^q(R, M)$$

When 2 is not invertible in R

- The classical groups $\mathrm{GW}_0^\mathrm{q}(R,M)$ and $\mathrm{L}_0^\mathrm{q}(R,M)$ are the 0-th Grothendieck-Witt and L-group of both Ω_M^q and Ω_M^gq , which agree in low degrees.
- ullet Taking either $\Omega_M^{
 m q}$ or $\Omega_M^{
 m gq}$, we may extend this sequence in two ways.
- The first option involves the classical quadratic L-groups, but not the classical quadratic Grothendieck-Witt groups.
- The second option involves the classical quadratic Grothendieck-Witt groups, but not the classical quadratic L-groups.
- This mismatch explains why this sequence remained non-extendable from a classical perspective.

Genuine L-groups

Question

Taking $Q_M^{\rm gq}$ to get classical GW-groups, what are the L-groups we get?

We have equivalences of Poincaré ∞-categories

$$(\mathcal{D}^{\mathrm{p}}(R), \Omega_M^{\mathrm{gq}}) \simeq (\mathcal{D}^{\mathrm{p}}(R), (\Omega_{-M}^{\mathrm{ge}})^{\left[2\right]}) \simeq (\mathcal{D}^{\mathrm{p}}(R), (\Omega_M^{\mathrm{gs}})^{\left[4\right]}).$$

By bordism invariance

$$L_{pq}^{gq}(R, M) \simeq \Sigma^{2} L_{pq}^{ge}(R, -M) \simeq \Sigma^{4} L_{pq}^{gs}(R, M)$$

$$\Rightarrow L_{pq}^{gq}(R, M) \simeq L_{pq}^{ge}(R, -M) \simeq L_{pq}^{gs}(R, M)$$

Conclusion

To describe the L-groups of all three genuine structures $\Omega_M^{\rm gq}, \Omega_M^{\rm ge}, \Omega_M^{\rm gs}$, it suffices to describe the genuine symmetric L-groups for $\pm M$.

Genuine L-groups

Summary

To describe the L-groups of all three genuine structures $\Omega_M^{\rm sq}, \Omega_M^{\rm ge}, \Omega_M^{\rm gs}$, it suffices to describe the genuine symmetric L-groups for $\pm M$.

Proposition

- For $n \ge 0$ the groups $\mathsf{L}_n^{\mathrm{gs}}(R,M)$ are naturally isomorphic to Ranicki's (M-based) symmetric L-groups of short complexes.
- $L_{-2}^{gs}(R, M)$ and $L_{-1}^{gs}(R, M)$ can be described as Witt groups of even forms and even formations, respectively.
- For $n \le -3$ the groups $\mathsf{L}_n^{\mathrm{gs}}(R,M)$ are naturally isomorphic to the classical quadratic L-groups.

Remark

Somewhat strikingly, Ranicki himself extended his short L-groups in negative degrees by defining them exactly as above. The genuine L-theory perspective then unites these various ad hoc definitions, and shows that they fit together as the homotopy groups of a spectrum.

Rings with bounded global dimension

Recall that R is said to have global dimension $\leq d$ if every module admits a projective resolution of length $\leq d$.

Theorem (L-theory comparison beyond the global dimension)

Let R be a Noetherian ring of global dimension $\leq d$. Then the maps

$$\mathsf{L}^{\mathrm{gq}}_n(R,M) \to \mathsf{L}^{\mathrm{ge}}_n(R,M) \to \mathsf{L}^{\mathrm{gs}}_n(R,M) \to \mathsf{L}^{\mathrm{s}}_n(R,M)$$

are isomorphisms for n at least d+3, d+1 and d-1, respectively (and injective for n at least d+2, d and d-2, respectively).

Corollary (GW-comparison beyond the global dimension)

Let R be a Noetherian ring of global dimension $\leq d$. Then the maps

$$\mathsf{GW}^{\mathrm{gq}}_n(R,M) \to \mathsf{GW}^{\mathrm{ge}}_n(R,M) \to \mathsf{GW}^{\mathrm{gs}}_n(R,M) \to \mathsf{GW}^{\mathrm{s}}_n(R,M)$$

are isomorphisms for n at least d+3, d+1 and d-1, respectively. The first three groups are classical!

Devissage for homotopy symmetric forms

Let R be a Dedekind domain with fraction field K, S a set of prime ideals. Define $R_S \subseteq K$ to be the localization of R away from S. Let M be a line bundle with an R-linear involution.

Claim

$$(\mathcal{D}^{\mathrm{p}}(R)_S, \iota^* \mathcal{Q}_M^{\mathrm{s}}) \to (\mathcal{D}^{\mathrm{p}}(R), \mathcal{Q}_M^{\mathrm{s}}) \to (\mathcal{D}^{\mathrm{p}}(R_S), \mathcal{Q}_{M_S}^{\mathrm{s}})$$

is a Poincaré-Verdier sequence. Here $\iota: \mathcal{D}^{\mathrm{p}}(R)_S \subseteq \mathcal{D}^{\mathrm{p}}(R)$ consists of S-torsion complexes and the Poincaré structure on it restricts from Ω_M^{s} .

Proposition (Devissage)

There is a natural Poincaré functor

$$\underset{p \in S}{\oplus} (\mathcal{D}^{p}(\mathbb{F}_{p}), (\Omega^{s}_{M/p})^{[-1]}) \to (\mathcal{D}^{p}(R)_{S}, \iota^{*}\Omega^{s}_{M})$$

which induces an equivalences on K, GW and L.

Localization sequences for Dedekind rings

Let R be a Dedekind domain, S a set of prime ideals. Define R_S to be the localization of R away from S. Let M be a line bundle with an R-linear involution.

Corollary

There are exact sequences

$$\bigoplus_{p \in S} \Omega L^{s}(\mathbb{F}_{p}, M/p) \to L^{s}(R, M) \to L^{s}(R_{S}, M_{S})$$

and

$$\underset{p \in S}{\oplus} \mathsf{GW^s}(\mathbb{F}_p, M/p[-1]) \to \mathsf{GW^s}(R, M) \to \mathsf{GW^s}(R_S, M_S)$$

These sequences induces long exact sequences in homotopy symmetric Grothendieck-Witt and L-groups. The latter coincide with the genuine symmetric variants in non-negative degrees since Dedekind rings have global dimension 1.

The homotopy limit problem for number rings

Question (Thomason)

When is the map $\mathfrak{GW}^{\mathrm{s}}_{\mathrm{cl}}(R,M) \to \mathfrak{K}(R,M)^{\mathrm{hC}_2}$ a 2-adic equivalence?

State of the art

- True for finite fields (Friedlander, Fiedorowicz-Priddy).
- True for R a field of characteristic 0 with $vcd_2 < 0$ (Hu-Kriz-Ormsby, another proof was recently given by Bachmann and Hopkin).
- True for R a commutative $\mathbb{Z}[1/2]$ -algebra with a global bound on vcd_2 of its residue fields (Berrick-Karoubi-Schlichting-Østvær).

Theorem (The homotopy limit problem for number rings)

Let R be a Dedekind domain whose fraction field is a number field, M a line bundle over R with an R-linear involution. Then the map

$$\mathsf{GW}^{\mathrm{s}}(R,M) \to \mathsf{K}(R,M)^{\mathrm{hC}_2}$$

is a 2-adic equivalence.

The Grothendieck-Witt groups of the integers

What are the higher Grothendieck-Witt groups of the integers?

Berrick-Karoubi

A computation of the ± 1 Grothendieck-Witt groups of $\mathbb{Z}[\frac{1}{2}]$.

- By the localization sequence and using the fact that $GW^s(\mathbb{F}_2)$ has only odd torsion in positive degrees, the difference between $GW^s(\mathbb{Z})$ and $GW^s(\mathbb{Z}[\frac{1}{2}])$ consists of odd torsion.
- Since the symmetric L-groups of $\mathbb Z$ contain no odd torsion, the odd torsion of $\mathsf{GW}^{\mathrm{s}}_n(\mathbb Z)$ is the same as the odd torsion of $\pi_n\,\mathsf{K}(\mathbb Z)_{\mathrm{hC}_2}.$
- This requires knowing the C_2 -action on $K_n(\mathbb{Z})$ (this action is the same for $\Omega^s_{\mathbb{Z}}$ and $\Omega^s_{-\mathbb{Z}}$).

Proposition

For $n \ge 2$ the C_2 -action on $K_{2n-1}(\mathbb{Z})[\frac{1}{2}]$ and $K_{2n-2}(\mathbb{Z})[\frac{1}{2}]$ is given by multiplication by $(-1)^n$.

Let B_n be the *n*'th Bernoulli number. Write c_n and w_{2n} for the numerator and denominator of $\left|\frac{B_{2n}}{4n}\right|$, respectively.

Theorem

The classical ε -symmetric Grothendieck-Witt groups $\mathbb Z$ are given in degrees $n \ge 1$ by the following table:

n =	$GW^{\mathrm{s}}_{\mathrm{cl},n}(\mathbb{Z})$	$GW^{-\mathrm{s}}_{\mathrm{cl},n}(\mathbb{Z})$
8 <i>k</i>	$\mathbb{Z}\oplus\mathbb{Z}/2$	0
8k + 1	$(\mathbb{Z}/2)^3$	0
8k+2	$(\mathbb{Z}/2)^2 \oplus K_{8k+2}(\mathbb{Z})_{\mathrm{odd}}$	$\mathbb{Z} \oplus K_{8k+2}(\mathbb{Z})_{\mathrm{odd}}$
8k+3	\mathbb{Z}/w_{4k+2}	$\mathbb{Z}/2w_{4k+2}$
8k+4	\mathbb{Z}	$\mathbb{Z}/2$
8k + 5	0	$\mathbb{Z}/2$
8k + 6	$K_{8k+6}(\mathbb{Z})_{\mathrm{odd}}$	$\mathbb{Z} \oplus K_{8k+6}(\mathbb{Z})_{\mathrm{odd}}$
8k+7	\mathbb{Z}/w_{4k+4}	\mathbb{Z}/w_{4k+4}

The group $K_{4m-2}(\mathbb{Z})_{\mathrm{odd}}$ has order c_m and is known to be cyclic for $m \leq 5000$ (Weibel). This holds for all m if Vandiver's conjecture is true.

Example

Table: the first 24 symmetric Grothendieck-Witt groups of $\ensuremath{\mathbb{Z}}$

k	$GW^{\mathrm{s}}_k(\mathbb{Z})$	k	$GW^s_k(\mathbb{Z})$	k	$GW^s_k(\mathbb{Z})$
0	$\mathbb{Z}\oplus\mathbb{Z}$	8	$\mathbb{Z}\oplus\mathbb{Z}/2$	16	$\mathbb{Z}\oplus\mathbb{Z}/2$
1	$(\mathbb{Z}/2)^3$	9	$(\mathbb{Z}/2)^3$	17	$(\mathbb{Z}/2)^3$
2	$(\mathbb{Z}/2)^2$	10	$(\mathbb{Z}/2)^2$	18	$(\mathbb{Z}/2)^2$
3	$\mathbb{Z}/24$	11	$\mathbb{Z}/504$	19	$\mathbb{Z}/264$
4	\mathbb{Z}	12	\mathbb{Z}	20	\mathbb{Z}
5	0	13	0	21	0
6	0	14	0	22	$\mathbb{Z}/691$
7	$\mathbb{Z}/240$	15	ℤ/480	23	$\mathbb{Z}/65520$

Example

Table: the first 24 skew-symmetric Grothendieck-Witt groups of $\ensuremath{\mathbb{Z}}$

k	$GW_k^{-\mathrm{s}}(\mathbb{Z})$	k	$GW_k^{-\mathrm{s}}(\mathbb{Z})$	k	$GW_k^{-\mathrm{s}}(\mathbb{Z})$
0	\mathbb{Z}	8	0	16	0
1	0	9	0	17	0
2	\mathbb{Z}	10	\mathbb{Z}	18	\mathbb{Z}
3	$\mathbb{Z}/48$	11	$\mathbb{Z}/1008$	19	ℤ/528
4	$\mathbb{Z}/2$	12	$\mathbb{Z}/2$	20	$\mathbb{Z}/2$
5	$\mathbb{Z}/2$	13	$\mathbb{Z}/2$	21	$\mathbb{Z}/2$
6	\mathbb{Z}	14	\mathbb{Z}	22	$\mathbb{Z} \oplus \mathbb{Z}/691$
7	$\mathbb{Z}/240$	15	ℤ/480	23	$\mathbb{Z}/65520$

The quadratic Grothendieck-Witt groups of the integers

Theorem

The classical quadratic Grothendieck-Witt groups of the integers are given by

- $\mathsf{GW}_0^{\mathrm{gq}}(\mathbb{Z}) = \mathbb{Z} \oplus \mathbb{Z}$.
- $\mathsf{GW}_1^{\mathrm{gq}}(\mathbb{Z}) = \mathbb{Z}/2 \oplus \mathbb{Z}/2$.
- $\mathsf{GW}_n^{\mathrm{gq}}(\mathbb{Z}) = \mathsf{GW}_n^{\mathrm{gs}}(\mathbb{Z})$ for $n \geq 2$.

Theorem

The classical skew-quadratic Grothendieck-Witt groups of the integers are given by

- $\mathsf{GW}_0^{-\mathrm{gq}}(\mathbb{Z}) = \mathbb{Z} \oplus \mathbb{Z}/2$.
- $\mathsf{GW}_1^{-\mathrm{gq}}(\mathbb{Z}) = \mathbb{Z}/4$.
- $\mathsf{GW}_2^{-\mathrm{gq}}(\mathbb{Z}) = \mathbb{Z}$.
- $GW_3^{-gq}(\mathbb{Z}) = \mathbb{Z}/24$.
- $\mathsf{GW}_n^{-\mathrm{gq}}(\mathbb{Z}) = \mathsf{GW}_n^{-\mathrm{gs}}(\mathbb{Z})$ for $n \geq 4$.