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Recollection

A Poincaré ∞-category is a stable ∞-category C equipped with a
quadratic functor Ϙ∶Cop

→ Sp satisfying a suitable non-degeneracy

condition, which results in a duality DϘ∶C
op ≃
Ð→ C.

For a ring R and an invertible module with involution M we have a
sequence of Poincaré structures on the stable ∞-category Dp

(R)

Ϙ
q
M ⇒ Ϙ

gq
M ⇒ Ϙ

ge
M ⇒ Ϙ

gs
M ⇒ Ϙ

s
M

For a Poincaré ∞-category we can define its Grothendieck-Witt
spectrum GW and its Grothendieck-Witt space GW = Ω∞ GW by
means of cobordism ∞-categories.

The functors GW and GW are both additive - they send split
Poincaré-Verdier squares to pullback squares.

The Grothendieck-Witt space is group-like, and so we can consider it
as taking values in E∞-groups.

GW and GW are the initial functors with these properties receiving a
map from Pn and Σ∞Pn, respectively.
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The L-theory space

Recall from Markus’ talks the definition of the L-theory space.

Definition

For (C,Ϙ) Poincaré, let ρn(C,Ϙ) = (Fun(Top
n ,C),Ϙ[n]), where

Tn is the poset of non-empty subsets of [n].

Ϙ[n] is the functor which sends ϕ∶Top
n → C to limTn Ϙ ○ ϕ.

The Poincaré ∞-categories ρn(C,Ϙ) fit into a simplicial object ρ●(C,Ϙ).
For a functor F∶Catp∞ → E with E admitting geometric realizations define

ρF∶Catp∞ → E ρF(C,Ϙ) = ∣Fρ●(C,Ϙ)∣.

Definition (Lurie-Ranicki)

The L-space of (C,Ϙ) is define by L ∶= ρPn.

L is a group-like Verdier-localizing functor from Catp∞ to spaces.

For n ≥ 0 we have a natural isomorphism πnL(C,Ϙ) ≅ Ln(C,Ϙ) (see
Markus’s talks).
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From GW to L

By the universal property of GW, the map Pn→ L factors through an
essentially unique map GW→ L. This map can also be constructed
explicitly as follows:

For n ∈ ∆ consider the natural map of posets

ηn∶T
op
n → TwAr[n] [n] ⊇ T ↦ min(T ) ≤ max(T ).

⇒ restriction yields a hermitian (and in fact Poincaré) functor

Qn(C,Ϙ) → ρn(C,Ϙ).

This map is an equivalence for n = 0,1. For n = 2 it sends

V ×Y W

V W

X Y Z

↦

Y

X Z

V ×Y W

V W

V ×Y W
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From GW to L

Obtain a map

∣Cob(C,Ϙ)∣ = ∣PnQ●(C,Ϙ[1])∣ → ∣Pnρ●(C,Ϙ[1])∣ = L(C,Ϙ[1])

and hence a map

GW(C,Ϙ) → ΩL(C,Ϙ[1])
∂
Ð→ L(C,Ϙ)

where ∂ is the boundary map coming from the metabolic sequence.
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Bordism invariance

A fundamental property of L is that it is bordism invariant. What does
that mean?

Internal functor categories

For (C,Ϙ), (D,Φ) two hermitian ∞-categories define

Funex
((C,Ϙ), (D,Φ)) ∶= (Funex

(C,D),natΦ
Ϙ
)

where Funex
(C,D) is the ∞-category of exact functors C→D, and

natΦ
Ϙ
(f ) = nat(Ϙ, f ∗Φ).

Hermitian objects in Funex
((C,Ϙ), (D,Φ)) correspond to hermitian

functors (f , η)∶ (C,Ϙ) → (D,Φ).

If (C,Ϙ) and (D,Φ) are Poincaré then Funex
((C,Ϙ), (D,Φ)) is

Poincaré and its Poincaré objects correspond to Poincaré functors from
(C,Ϙ) to (D,Φ).
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Bordism equivalences

A fundamental property of L is that it is bordism invariant. What does
that mean?

Definition

Two Poincaré functors (f , η), (g , ϑ)∶ (C,Ϙ) → (D,Φ) are said to be
cobordant if there is a cobordism between them when considered as
Poincaré objects in Funex

((C,Ϙ), (D,Φ)).

A Poincaré functor (f , η)∶ (C,Ϙ) → (D,Φ) is called a bordism
equivalence there exists a Poincaré functor (g , θ)∶ (D,Φ) → (C,Ϙ) such
that (f , η) ○ (g , θ) and (g , θ) ○ (f , η) are cobordant to the respective
identifies.

Example

If (C,Ϙ) is a Poincaré ∞-category and A ⊆ C is an isotropic subcategory
then the Poincaré functor Hlgy(A) → (C,Ϙ) is a bordism equivalence.

Yonatan Harpaz



Bordism invariant functors

Definition

A functor F∶Catp∞ → E is called bordism invariant if it sends bordism
equivalences to equivalences.

For group-like additive functors bordism invariance admits several
equivalent characterizations:

Lemma

For F∶Catp∞ → E a group-like additive functor the following are
equivalent:

1 F is bordism invariant.

2 F vanishes on metabolic Poincaré ∞-categories, i.e., those that admit
a Lagrangian.

3 F vanishes on Hyp(C) for every C ∈ Catex∞ .

Proof.

(1) implies (2) implies (3) without the assumptions on F. To prove (3)
⇒ (1) one uses the isotropic decomposition theorem.
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Bordism invariance of L

L is group-like and Verdier-localizing. To see that it is bordism invariant
it hence suffices to check that it vanishes on hyperbolic Poincaré
∞-categories.

The simplicial space

Pn(ρ● Hyp(C)) ≃ PnHyp(Fun(Top
● ,C)) ≃ Fun(Top

● ,C)≃

is the simplicial subdivision of Fun(∆●,C)≃, and hence

L(Hyp(C)) ≃ ∣Fun(Top
● ,C)≃∣ ≃ ∣Fun(∆●,C)≃∣ ≃ ∣C∣ ≃ ∗

since C has a zero object.
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An L-theory spectrum

Recall from the previous talk the operation F ↦ CobF which sends a
group-like additive functor F∶Catp∞ → S to an additive functor

F∶Catp∞ → Sp such that Ω∞CobF ≃ F.

Definition

We define the L-spectrum of a Poincaré ∞-category by

L(C,Ϙ) = CobL(C,Ϙ)

L is by construction an additive functor to spectra (automatically
group-like since Sp is stable).

The Q-construction preserves hyperbolic Poincaré ∞-categories ⇒ the
functor L is bordism invariant.

The map GW→ L induces a map GW → L.
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Shifts of L-theory

Applying L to the metabolic sequence yields a fiber sequence

L(C,Ϙ[−1]
) → L(Met(C,Ϙ)) → L(C,Ϙ).

But L(Met(C,Ϙ)) ≃ 0, so L(C,Ϙ[−1]
) ≃ Ω L(C,Ϙ). By induction:

L(C,Ϙ[−n]) ≃ Ωn L(C,Ϙ) n ∈ Z.

Conclusion

L(C,Ϙ) can also be described as the Ω-spectrum with components

L(C,Ϙ),L(C,Ϙ[1]),L(C,Ϙ[2]), ...,

with the structure maps L(C,Ϙ[n])
≃
Ð→ ΩL(C,Ϙ[n+1]

) coming from the
metabolic sequence.

This observation holds for any group-like additive functor F∶Catp∞ → S.
In fact, bordism invariant group-like additive functors to spaces admit an
essentially unique bordism invariant additive lift to spectra, given by the
above formula.
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Bordification of additive functors

Definition

Let b∶F → F′ be a map between additive functors Catp∞ → Sp. We say
that b exhibits F′ as the bordification of F if F′ is bordism invariant and
for every other bordism invariant additive functor G∶Catp∞ → Sp the
induced map

nat(F′,G) → nat(F,G)

is an equivalence.

Define GWbord
∶Catp∞ → Sp to be the cofiber of the map

KhC2 → GW

induced from the C2-equivariant hyperbolic map hyp∶K→ GW. Note
that GWbord is additive since Sp is stable.

Lemma

The map GW → GWbord exhibits GWbord as the bordification of GW.
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Lemma

The map GW → GWbord exhibits GWbord as the bordification of GW.

Proof.

We first check that GWbord is bordism invariant. Since it is an additive
functor to spectra it will suffice to check that it vanishes on Hyp(C) for
every C. Indeed, this is because the map

K(C × Cop
)hC2 = [K(C) ×K(C)]hC2 → K(C) = GW(Hyp(C))

is an equivalence. We now check that GW → GWbord induces an
equivalence on mapping spectra into a bordism invariant additive test
functor G. For this it suffices to show that KhC2 maps trivially to any
bordism invariant functor, or equivalently, that K has that property.

Fact: the functor (C,Ϙ) ↦ Hyp(C) from Catp∞ to Catp∞ is adjoint to
itself in both directions

⇒ maps from K = GW ○Hyp to G are like maps from GW to
G ○Hyp = 0.
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L-theory as bordification

We claim that GWbord is actually equivalent to L.

Two birds with one stone

This gives a universal characterization for L, and at the same time puts L
in an exact sequence with GW and KhC2 .

We proceed in several steps:

L is naturally equivalent to ρGW = ∣GW(ρ●(−))∣, such that the map
GW → L identifies with the one induced by the inclusion of zero
simplices. This is proven using the commutativity ρn Qm ≃ Qm ρn.

For G an additive bordism invariant functor the map G→ ρG is an
equivalence. This follows from the fact that each simplicial structure
map ρn(C,Ϙ) → ρm(C,Ϙ) is a bordism equivalence.

The functor ρK is trivial. Indeed, by the commutativity of the ρ and
hyperbolic constructions, ρK(C) ≃ ρGW(Hyp(C)) ≃ L(Hyp(C)) ≃ 0.
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Proposition

There is a natural equivalence GWbord
≃ L.

Proof.

Apply ρ to the sequence

KhC2 → GW → GWbord

to obtain a diagram

KhC2
//

��

GW

��

// GWbord

≃
��

0 ≃(ρK)hC2

≃ // ρ(KhC2)
// L

≃ // ρGWbord

where we identified ρGW ≃ L by the first point in the previous slide.

Yonatan Harpaz



The universal property of L-theory

Corollary

The natural transformation GW⇒ L exhibits L as the initial bordism
invariant additive functor under GW.

Corollary (Universality for L-theory)

The natural transformation Σ∞Pn⇒ L exhibits L as the initial bordism
invariant additive functor under Σ∞Pn.
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Long exact sequences of GW and L-groups

Corollary (The fundamental fiber sequence)

The natural maps
KhC2 → GW → L

form a fiber sequence of additive functors Catp∞ → Sp.

Since K and L are Verdier-localizing - it follows that GW is Verdier
localizing as well.
Gives a long exact sequence in homotopy groups

⋯ →πn K(C)hC2 → GWn(C,Ϙ) → Ln(C,Ϙ) →

πn−1 K(C)hC2 → GWn−1(C,Ϙ) → Ln−1(C,Ϙ) → ⋯

The Tate square

GW //

��

KhC2

��
L // KtC2 ≃ ρ(KhC2

)
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Applications
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Extending the classical exact sequence

For R a ring and M an invertible module with involution over R, recall
from the first talk the exact sequence

K0(R)C2 → GWq
0(R,M) → Lq

0(R,M) = Wq
0(R,M)

When 2 is invertible in R

The quadratic, symmetric, and all the genuine structures we described
on Dp

(R) are all the same, call them ϘM .

In this case GW(Dp
(R),ϘM) coincides with Schlichting’s

GW-spectrum, and L(Dp
(R),ϘM) coincides with Ranicki’s quadratic

L-spectrum.

The above sequence extends to a long exact sequence involving
GW-groups and L-groups as in the previous slide.

This was known in this case by the work of Schlichting.
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Extending the classical exact sequence

For R a ring and M an invertible module with involution over R, recall
from the first talk the exact sequence

K0(R)C2 → GWq
0(R,M) → Lq

0(R,M) = Wq
0(R,M)

When 2 is not invertible in R

The classical groups GWq
0(R,M) and Lq

0(R,M) are the 0-th
Grothendieck-Witt and L-group of both ϘqM and ϘgqM , which agree in
low degrees.

Taking either ϘqM or ϘgqM , we may extend this sequence in two ways.

The first option involves the classical quadratic L-groups, but not the
classical quadratic Grothendieck-Witt groups.

The second option involves the classical quadratic Grothendieck-Witt
groups, but not the classical quadratic L-groups.

This mismatch explains why this sequence remained non-extendable
from a classical perspective.
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Genuine L-groups

Question

Taking ϘgqM to get classical GW-groups, what are the L-groups we get?

We have equivalences of Poincaré ∞-categories

(Dp
(R),ϘgqM ) ≃ (Dp

(R), (Ϙge−M)
[2]

) ≃ (Dp
(R), (ϘgsM)

[4]
).

By bordism invariance

Lgq
(R,M) ≃ Σ2 Lge

(R,−M) ≃ Σ4 Lgs
(R,M)

⇒

Lgq
n (R,M) ≃ Lge

n−2(R,−M) ≃ Lgs
n−4(R,M)

Conclusion

To describe the L-groups of all three genuine structures ϘgqM ,Ϙ
ge
M ,Ϙ

gs
M , it

suffices to describe the genuine symmetric L-groups for ±M.
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Genuine L-groups

Summary

To describe the L-groups of all three genuine structures ϘgqM ,Ϙ
ge
M ,Ϙ

gs
M , it

suffices to describe the genuine symmetric L-groups for ±M.

Proposition

For n ≥ 0 the groups Lgs
n (R,M) are naturally isomorphic to Ranicki’s

(M-based) symmetric L-groups of short complexes.

Lgs
−2(R,M) and Lgs

−1(R,M) can be described as Witt groups of even
forms and even formations, respectively.

For n ≤ −3 the groups Lgs
n (R,M) are naturally isomorphic to the

classical quadratic L-groups.

Remark

Somewhat strikingly, Ranicki himself extended his short L-groups in
negative degrees by defining them exactly as above. The genuine
L-theory perspective then unites these various ad hoc definitions, and
shows that they fit together as the homotopy groups of a spectrum.
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Rings with bounded global dimension

Recall that R is said to have global dimension ≤ d if every module admits
a projective resolution of length ≤ d .

Theorem (L-theory comparison beyond the global dimension)

Let R be a Noetherian ring of global dimension ≤ d. Then the maps

Lgq
n (R,M) → Lge

n (R,M) → Lgs
n (R,M) → Ls

n(R,M)

are isomorphisms for n at least d + 3,d + 1 and d − 1, respectively (and
injective for n at least d + 2,d and d − 2, respectively).

Corollary (GW-comparison beyond the global dimension)

Let R be a Noetherian ring of global dimension ≤ d. Then the maps

GWgq
n (R,M) → GWge

n (R,M) → GWgs
n (R,M) → GWs

n(R,M)

are isomorphisms for n at least d + 3,d + 1 and d − 1, respectively. The
first three groups are classical!
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Devissage for homotopy symmetric forms

Let R be a Dedekind domain with fraction field K , S a set of prime
ideals. Define RS ⊆ K to be the localization of R away from S . Let M be
a line bundle with an R-linear involution.

Claim

(Dp
(R)S , ι

∗
Ϙ
s
M) → (Dp

(R),ϘsM) → (Dp
(RS),Ϙ

s
MS

)

is a Poincaré-Verdier sequence. Here ι∶Dp
(R)S ⊆Dp

(R) consists of
S-torsion complexes and the Poincaré structure on it restricts from ϘsM .

Proposition (Devissage)

There is a natural Poincaré functor

⊕
p∈S

(Dp
(Fp), (Ϙ

s
M/p)

[−1]
) → (Dp

(R)S , ι
∗
Ϙ
s
M)

which induces an equivalences on K,GW and L.

Yonatan Harpaz



Localization sequences for Dedekind rings

Let R be a Dedekind domain, S a set of prime ideals. Define RS to be
the localization of R away from S . Let M be a line bundle with an
R-linear involution.

Corollary

There are exact sequences

⊕
p∈S

Ω Ls
(Fp,M/p) → Ls

(R,M) → Ls
(RS ,MS)

and
⊕
p∈S

GWs
(Fp,M/p[−1]) → GWs

(R,M) → GWs
(RS ,MS)

These sequences induces long exact sequences in homotopy symmetric
Grothendieck-Witt and L-groups.The latter coincide with the genuine
symmetric variants in non-negative degrees since Dedekind rings have
global dimension 1.
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The homotopy limit problem for number rings

Question (Thomason)

When is the map GW
s
cl(R,M) →K(R,M)

hC2 a 2-adic equivalence?

State of the art

True for finite fields (Friedlander, Fiedorowicz-Priddy).

True for R a field of characteristic 0 with vcd2 < 0 (Hu-Kriz-Ormsby,
another proof was recently given by Bachmann and Hopkin).

True for R a commutative Z[1/2]-algebra with a global bound on vcd2

of its residue fields (Berrick-Karoubi-Schlichting-Østvær).

Theorem (The homotopy limit problem for number rings)

Let R be a Dedekind domain whose fraction field is a number field, M a
line bundle over R with an R-linear involution. Then the map

GWs
(R,M) → K(R,M)

hC2

is a 2-adic equivalence.
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The Grothendieck-Witt groups of the integers

What are the higher Grothendieck-Witt groups of the integers?

Berrick-Karoubi

A computation of the ±1 Grothendieck-Witt groups of Z[
1
2
].

By the localization sequence and using the fact that GWs
(F2) has only

odd torsion in positive degrees, the difference between GWs
(Z) and

GWs
(Z[

1
2
]) consists of odd torsion.

Since the symmetric L-groups of Z contain no odd torsion, the odd
torsion of GWs

n(Z) is the same as the odd torsion of πn K(Z)hC2 .

This requires knowing the C2-action on Kn(Z) (this action is the same
for ϘsZ and Ϙs−Z).

Proposition

For n ≥ 2 the C2-action on K2n−1(Z)[
1
2
] and K2n−2(Z)[

1
2
] is given by

multiplication by (−1)n.
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Let Bn be the n’th Bernoulli number. Write cn and w2n for the numerator
and denominator of ∣

B2n

4n
∣, respectively.

Theorem

The classical ε-symmetric Grothendieck-Witt groups Z are given in
degrees n ≥ 1 by the following table:

n = GWs
cl,n(Z) GW−s

cl,n(Z)

8k Z⊕Z/2 0
8k + 1 (Z/2)3 0
8k + 2 (Z/2)2

⊕K8k+2(Z)odd Z⊕K8k+2(Z)odd

8k + 3 Z/w4k+2 Z/2w4k+2

8k + 4 Z Z/2
8k + 5 0 Z/2
8k + 6 K8k+6(Z)odd Z⊕K8k+6(Z)odd

8k + 7 Z/w4k+4 Z/w4k+4

The group K4m−2(Z)odd has order cm and is known to be cyclic for
m ≤ 5000 (Weibel). This holds for all m if Vandiver’s conjecture is true.
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Example

Table: the first 24 symmetric Grothendieck-Witt groups of Z

k GWs
k(Z) k GWs

k(Z) k GWs
k(Z)

0 Z⊕Z 8 Z⊕Z/2 16 Z⊕Z/2
1 (Z/2)3 9 (Z/2)3 17 (Z/2)3

2 (Z/2)2 10 (Z/2)2 18 (Z/2)2

3 Z/24 11 Z/504 19 Z/264
4 Z 12 Z 20 Z
5 0 13 0 21 0
6 0 14 0 22 Z/691
7 Z/240 15 Z/480 23 Z/65520
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Example

Table: the first 24 skew-symmetric Grothendieck-Witt groups of Z

k GW−s
k (Z) k GW−s

k (Z) k GW−s
k (Z)

0 Z 8 0 16 0
1 0 9 0 17 0
2 Z 10 Z 18 Z
3 Z/48 11 Z/1008 19 Z/528
4 Z/2 12 Z/2 20 Z/2
5 Z/2 13 Z/2 21 Z/2
6 Z 14 Z 22 Z⊕Z/691
7 Z/240 15 Z/480 23 Z/65520
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The quadratic Grothendieck-Witt groups of the integers

Theorem

The classical quadratic Grothendieck-Witt groups of the integers are
given by

GWgq
0 (Z) = Z⊕Z.

GWgq
1 (Z) = Z/2⊕Z/2.

GWgq
n (Z) = GWgs

n (Z) for n ≥ 2.

Theorem

The classical skew-quadratic Grothendieck-Witt groups of the integers
are given by

GW−gq
0 (Z) = Z⊕Z/2.

GW−gq
1 (Z) = Z/4.

GW−gq
2 (Z) = Z.

GW−gq
3 (Z) = Z/24.

GW−gq
n (Z) = GW−gs

n (Z) for n ≥ 4.
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