Geometric property (T) for non-discrete spaces

Jeroen Winkel

10 June 2021

101	000	\ \/:	nka
Jei	oen	V V I	IIIKei

 $G = (G_n)$ an increasing sequence of graphs, each vertex degree at most D.

G is a metric space.

→ < ∃ →</p>

 $G = (G_n)$ an increasing sequence of graphs, each vertex degree at most D.

G is a metric space.

Consider $T \in B(L^2G)$. We can consider T as a matrix. $G = (G_n)$ an increasing sequence of graphs, each vertex degree at most D.

G is a metric space.

Consider $T \in B(L^2G)$. We can consider T as a matrix.

Definition (controlled support)

T has controlled support if $\sup(d(x, y) \mid T_{x,y} \neq 0) < \infty$.

In particular, T acts on each L^2G_n .

 $\mathbb{C}_{cs}[G]$ is the algebra of all operators with controlled support.

.

 $\mathbb{C}_{cs}[G]$ is the algebra of all operators with controlled support.

Example (Laplacian)

Laplacian $\Delta \in \mathbb{C}_{cs}[G]$, given by $\Delta_{x,x} = \deg(x)$, and $\Delta_{x,y} = -1$ if x and y adjacent.

A B A A B A

 $\mathbb{C}_{cs}[G]$ is the algebra of all operators with controlled support.

Example (Laplacian)

Laplacian $\Delta \in \mathbb{C}_{cs}[G]$, given by $\Delta_{x,x} = \deg(x)$, and $\Delta_{x,y} = -1$ if x and y adjacent.

Always $0 \in \sigma(\Delta)$ and $\Delta \geq 0$. The graph *G* is an expander iff $\sigma(\Delta) \subseteq \{0\} \cup [\gamma, \infty)$ for some $\gamma > 0$.

▶ ▲ 문 ▶ ▲ 문 ▶

Geometric property (T) 3/3

Definition (representation)

A representation of $\mathbb{C}_{cs}[G]$ is a *-homomorphism

 $\rho: \mathbb{C}_{\mathsf{cs}}[G] \to B(\mathcal{H}).$

- **4 ∃ ≻** 4

Geometric property (T) 3/3

Definition (representation)

A representation of $\mathbb{C}_{\mathsf{cs}}[G]$ is a *-homomorphism

$$\rho: \mathbb{C}_{\mathsf{cs}}[G] \to B(\mathcal{H}).$$

Definition (maximal spectrum)

$$\sigma_{\max}(\Delta) = \bigcup_{(\rho,\mathcal{H})} \sigma(\rho(\Delta)).$$

Geometric property (T) 3/3

Definition (representation)

A representation of $\mathbb{C}_{\mathsf{cs}}[G]$ is a *-homomorphism

$$\rho: \mathbb{C}_{\mathsf{cs}}[G] \to B(\mathcal{H}).$$

Definition (maximal spectrum)

$$\sigma_{\max}(\Delta) = \bigcup_{(\rho,\mathcal{H})} \sigma(\rho(\Delta)).$$

Definition (Willett, Yu 2010: Geometric property (T))

G has geometric property (T): there is $\gamma > 0$ with $\sigma_{\max}(\Delta) \subseteq \{0\} \cup [\gamma, \infty)$.

Jeroen Winkel

Example (box space)

Let G a group, normal subgroups $G_1 \supseteq G_2 \supseteq \cdots$ with G/G_n finite and $\bigcap_n G_n = \{1\}$. Finitely generated by S. Box space is union of Cayley graphs G/G_n .

.

Example (box space)

Let G a group, normal subgroups $G_1 \supseteq G_2 \supseteq \cdots$ with G/G_n finite and $\bigcap_n G_n = \{1\}$. Finitely generated by S. Box space is union of Cayley graphs G/G_n .

Theorem [Willett-Yu]

G has property (T) iff $\bigsqcup_n G/G_n$ has geometric property (T).

loroon	M/m	100
IPLUPII	VVIII	
50.00		

• • = • • = •

Coarse equivalence 1/3

Let X and Y be metric spaces.

Definition (coarsely equivalent)

X and Y are *coarsely equivalent* if they look roughly the same if you look from afar.

Coarse equivalence 1/3

Let X and Y be metric spaces.

Definition (coarsely equivalent)

X and Y are *coarsely equivalent* if they look roughly the same if you look from afar.

Concretely: there are $f: X \to Y$ and $g: Y \to X$ such that

$$d(f(x), f(x')) \le \rho(d(x, x'))$$

$$d(g(y), g(y')) \le \rho(d(y, y'))$$

$$d(fg(y), y) \le C$$

$$d(gf(x), x) \le C.$$

Coarse equivalence 2/3

Theorem [Willett-Yu]

Geometric property (T) is coarse invariant: if (G_n) and (H_n) are coarsely equivalent graph sequences, then (G_n) has geometric (T) iff (H_n) has geometric (T). We would like to generalise to non-discrete metric spaces.

We would like to generalise to non-discrete metric spaces.

- (sequences of) Riemannian manifolds
- Warped systems

Recall: the graphs had to have bounded degree.

Recall: the graphs had to have bounded degree.

Definition

Bounded geometry for metric space: there is R, s.t. for every S, there is an N, such that: every S-ball is covered by at most N different R-balls.

Bounded geometry 2/2

Bounded geometry is coarse invariant.

Bounded geometry 2/2

Bounded geometry is coarse invariant.

Theorem [W.]

X has bounded geometry iff there is a measure μ that is *uniformly* bounded and gordo.

Bounded geometry 2/2

Bounded geometry is coarse invariant.

Theorem [W.]

X has bounded geometry iff there is a measure μ that is *uniformly* bounded and gordo.

Uniformly bounded

For every R there is a C such that every R-ball has volume at most C.

Gordo

There is an R and $\epsilon > 0$ such that every R-ball has volume at least ϵ .

Operators with controlled support

 $L^2 X = L^2(X,\mu).$

Image: A matrix and A matrix

Operators with controlled support

 $L^2 X = L^2(X, \mu).$

Consider $T \in B(L^2X)$.

Definition (controlled support)

There is R such that for every $\xi \in L^2 X$ supported on U, $T\xi$ is supported on $U_R = \{x \mid d(x, U) \leq R\}.$

Operators with controlled support

 $L^2 X = L^2(X, \mu).$

Consider $T \in B(L^2X)$.

Definition (controlled support)

There is R such that for every $\xi \in L^2 X$ supported on U, $T\xi$ is supported on $U_R = \{x \mid d(x, U) \leq R\}.$

if T and S have controlled support: so do T + S, TS and T^* .

Roe algebra 1/2

Definition (pre-Roe algebra)

The pre-Roe algebra $\mathbb{C}_{cs}[X]$ consists of all operators in $B(L^2X)$ with controlled support.

The pre-Roe algebra $\mathbb{C}_{cs}[X]$ consists of all operators in $B(L^2X)$ with controlled support.

Definition (representation)

A representation is a *-homomorphism $\rho \colon \mathbb{C}_{cs}[X] \to B(\mathcal{H})$.

The pre-Roe algebra $\mathbb{C}_{cs}[X]$ consists of all operators in $B(L^2X)$ with controlled support.

Definition (representation)

A representation is a *-homomorphism $\rho \colon \mathbb{C}_{cs}[X] \to B(\mathcal{H})$.

Example

Canonical representation: take $\mathcal{H} = L^2 X$ and $\rho(T) = T$.

Roe algebra 2/2

Definition (maximal norm)

$$\|T\|_{\max} = \sup_{(\rho,\mathcal{H})} \|\rho(T)\|.$$

Image: Image:

→ < ∃ →</p>

Definition (maximal norm)

$$\|T\|_{\max} = \sup_{(\rho,\mathcal{H})} \|\rho(T)\|.$$

Definition (Roe algebra)

Roe algebra $C^*_{\max}(X)$ is completion of $\mathbb{C}_{cs}[X]$ w.r.t. maximal norm.

F 4 3 F 4

Laplacians

Definition (Laplacian)

Let

$$\Delta_R \colon L^2 X \to L^2 X$$

 $\Delta_R \xi(x) = \int_{d(y,x) \le R} (\xi(x) - \xi(y)) d\mu(y).$

Image: A mathematical states and a mathem

Laplacians

Definition (Laplacian)

Let

$$\Delta_R \colon L^2 X \to L^2 X$$

 $\Delta_R \xi(x) = \int_{d(y,x) \le R} (\xi(x) - \xi(y)) d\mu(y).$

 $\Delta_R \in \mathbb{C}_{cs}[X].$

Image: A match a ma

Laplacians

Definition (Laplacian)

Let

$$\Delta_R \colon L^2 X \to L^2 X$$

 $\Delta_R \xi(x) = \int_{d(y,x) \leq R} (\xi(x) - \xi(y)) d\mu(y).$

 $\Delta_R \in \mathbb{C}_{cs}[X].$

```
If R \geq S then \Delta_R \geq \Delta_S \geq 0.
```

→ < Ξ →</p>

Image: Image:

Consider representation $\rho \colon \mathbb{C}_{cs}[X] \to B(\mathcal{H}).$

Image: A match a ma

Consider representation $\rho \colon \mathbb{C}_{cs}[X] \to B(\mathcal{H}).$

Definition (constant vectors)

 $v \in \mathcal{H}$ is called *constant vector* if $\Delta_R v = 0$ for all *R*.

Constant vectors \mathcal{H}_c .

Consider representation $\rho \colon \mathbb{C}_{cs}[X] \to B(\mathcal{H}).$

Definition (constant vectors)

 $v \in \mathcal{H}$ is called *constant vector* if $\Delta_R v = 0$ for all *R*.

Constant vectors \mathcal{H}_c .

Example

if $\mathcal{H} = L^2 X$, constant vectors are the functions that are constant on each component.

Definition (geometric (T)) [W 2020]

X has geometric property (T) if there is R such that:

• for every representation (ρ, \mathcal{H}) , we have $\mathcal{H}_c = \ker(\rho(\Delta_R))$

• there is $\gamma > 0$ such that $\sigma_{\max}(\Delta_R) \subseteq \{0\} \cup [\gamma, \infty)$.

Theorem

For graphs, we have the same property as before.

Theorem

For graphs, we have the same property as before.

Theorem

Independent of chosen measure μ .

Theorem

For graphs, we have the same property as before.

Theorem

Independent of chosen measure μ .

Theorem (coarse invariance)

if X and Y are coarsely equivalent, X has (T) iff Y has (T).

Theorem

For graphs, we have the same property as before.

Theorem

Independent of chosen measure μ .

Theorem (coarse invariance)

if X and Y are coarsely equivalent, X has (T) iff Y has (T).

Theorem (connected spaces)

if X is connected, then X has (T) if and only if X is either bounded or not amenable.

Jeroen Winkel

- **4 ∃ ≻** 4

Manifolds

Let M a Riemannian manifold (not necessarily connected). Assume: injectivity radius positive, Ricci curvature bounded below (by negative constant) Let M a Riemannian manifold (not necessarily connected). Assume: injectivity radius positive, Ricci curvature bounded below (by negative constant)

Consider the Laplacian operator Δ_M . For every representation (ρ, \mathcal{H}) , we can consider Δ_M as an *unbounded* operator on \mathcal{H} . Let M a Riemannian manifold (not necessarily connected). Assume: injectivity radius positive, Ricci curvature bounded below (by negative constant)

Consider the Laplacian operator Δ_M . For every representation (ρ, \mathcal{H}) , we can consider Δ_M as an *unbounded* operator on \mathcal{H} .

Theorem [W 2020]

Property (T) iff there is γ such that the spectrum of $\rho(\Delta_M)$ is contained in $\{0\} \cup [\gamma, \infty]$ for every representation (ρ, \mathcal{H}) .

Let M a compact Riemannian manifold. It has a metric and a measure.

Let Γ a group generated by finite *S*, with m.p. action $\alpha \colon \Gamma \curvearrowright M$.

Let M a compact Riemannian manifold. It has a metric and a measure.

Let Γ a group generated by finite *S*, with m.p. action $\alpha \colon \Gamma \curvearrowright M$.

Definition (warped metric)

For positive t, we make a new metric on M: largest metric d_t s.t. $d_t(x, y) \leq td(x, y)$ and $d_t(x, s \cdot x) \leq 1$.

Let M a compact Riemannian manifold. It has a metric and a measure.

Let Γ a group generated by finite *S*, with m.p. action $\alpha \colon \Gamma \curvearrowright M$.

Definition (warped metric)

For positive t, we make a new metric on M: largest metric d_t s.t. $d_t(x, y) \leq td(x, y)$ and $d_t(x, s \cdot x) \leq 1$.

Definition (warped system)

Union $\bigsqcup_{t\in\mathbb{N}} M \times \{t\}$ with metric d_t on $M \times \{t\}$.

Let M a compact Riemannian manifold. It has a metric and a measure.

Let Γ a group generated by finite *S*, with m.p. action $\alpha \colon \Gamma \curvearrowright M$.

Definition (warped metric)

For positive t, we make a new metric on M: largest metric d_t s.t. $d_t(x, y) \leq td(x, y)$ and $d_t(x, s \cdot x) \leq 1$.

Definition (warped system)

Union $\bigsqcup_{t \in \mathbb{N}} M \times \{t\}$ with metric d_t on $M \times \{t\}$.

Question: when geometric property (T)?

Possible answer: if Γ has property (T) and the action is ergodic.