Geometric property (T) for non-discrete spaces

Jeroen Winkel

10 June 2021

Geometric property (T) 1/3

$G=\left(G_{n}\right)$ an increasing sequence of graphs, each vertex degree at most D.
G is a metric space.

Geometric property (T) 1/3

$G=\left(G_{n}\right)$ an increasing sequence of graphs, each vertex degree at most D.
G is a metric space.

Consider $T \in B\left(L^{2} G\right)$.
We can consider T as a matrix.

Geometric property (T) 1/3

$G=\left(G_{n}\right)$ an increasing sequence of graphs, each vertex degree at most D.
G is a metric space.

Consider $T \in B\left(L^{2} G\right)$.
We can consider T as a matrix.

Definition (controlled support)

T has controlled support if $\sup \left(d(x, y) \mid T_{x, y} \neq 0\right)<\infty$.
In particular, T acts on each $L^{2} G_{n}$.

Geometric property (T) 2/3

Definition (pre-Roe algebra)

$\mathbb{C}_{\mathrm{cs}}[G]$ is the algebra of all operators with controlled support.

Geometric property (T) 2/3

Definition (pre-Roe algebra)

$\mathbb{C}_{\mathrm{cs}}[G]$ is the algebra of all operators with controlled support.

Example (Laplacian)

Laplacian $\Delta \in \mathbb{C}_{\text {cs }}[G]$, given by $\Delta_{x, x}=\operatorname{deg}(x)$, and $\Delta_{x, y}=-1$ if x and y adjacent.

Geometric property (T) 2/3

Definition (pre-Roe algebra)

$\mathbb{C}_{\mathrm{cs}}[G]$ is the algebra of all operators with controlled support.

Example (Laplacian)

Laplacian $\Delta \in \mathbb{C}_{\text {cs }}[G]$, given by $\Delta_{x, x}=\operatorname{deg}(x)$, and $\Delta_{x, y}=-1$ if x and y adjacent.

Always $0 \in \sigma(\Delta)$ and $\Delta \geq 0$. The graph G is an expander iff $\sigma(\Delta) \subseteq\{0\} \cup[\gamma, \infty)$ for some $\gamma>0$.

Geometric property (T) 3/3

Definition (representation)

A representation of $\mathbb{C}_{c s}[G]$ is a $*$-homomorphism

$$
\rho: \mathbb{C}_{\mathrm{cs}}[G] \rightarrow B(\mathcal{H})
$$

Geometric property (T) 3/3

Definition (representation)

A representation of $\mathbb{C}_{c s}[G]$ is a $*$-homomorphism

$$
\rho: \mathbb{C}_{\mathrm{cs}}[G] \rightarrow B(\mathcal{H})
$$

Definition (maximal spectrum)

$$
\sigma_{\max }(\Delta)=\bigcup_{(\rho, \mathcal{H})} \sigma(\rho(\Delta)) .
$$

Geometric property (T) 3/3

Definition (representation)

A representation of $\mathbb{C}_{c s}[G]$ is a $*$-homomorphism

$$
\rho: \mathbb{C}_{\mathrm{cs}}[G] \rightarrow B(\mathcal{H})
$$

Definition (maximal spectrum)

$$
\sigma_{\max }(\Delta)=\bigcup_{(\rho, \mathcal{H})} \sigma(\rho(\Delta)) .
$$

Definition (Willett, Yu 2010: Geometric property (T))

G has geometric property (T) : there is $\gamma>0$ with $\sigma_{\max }(\Delta) \subseteq\{0\} \cup[\gamma, \infty)$.

Why (T)?

Example (box space)

Let G a group, normal subgroups $G_{1} \supseteq G_{2} \supseteq \cdots$ with G / G_{n} finite and $\bigcap_{n} G_{n}=\{1\}$.
Finitely generated by S.
Box space is union of Cayley graphs G / G_{n}.

Why (T)?

Example (box space)

Let G a group, normal subgroups $G_{1} \supseteq G_{2} \supseteq \cdots$ with G / G_{n} finite and $\bigcap_{n} G_{n}=\{1\}$.
Finitely generated by S.
Box space is union of Cayley graphs G / G_{n}.

Theorem [Willett-Yu]

G has property (T) iff $\bigsqcup_{n} G / G_{n}$ has geometric property (T).

Coarse equivalence $1 / 3$

Let X and Y be metric spaces.

Definition (coarsely equivalent)

X and Y are coarsely equivalent if they look roughly the same if you look from afar.

Coarse equivalence $1 / 3$

Let X and Y be metric spaces.

Definition (coarsely equivalent)

X and Y are coarsely equivalent if they look roughly the same if you look from afar.
Concretely: there are $f: X \rightarrow Y$ and $g: Y \rightarrow X$ such that

$$
\begin{aligned}
d\left(f(x), f\left(x^{\prime}\right)\right) & \leq \rho\left(d\left(x, x^{\prime}\right)\right) \\
d\left(g(y), g\left(y^{\prime}\right)\right) & \leq \rho\left(d\left(y, y^{\prime}\right)\right) \\
d(f g(y), y) & \leq C \\
d(g f(x), x) & \leq C .
\end{aligned}
$$

Coarse equivalence $2 / 3$

Coarse equivalence $3 / 3$

Theorem [Willett-Yu]

Geometric property (T) is coarse invariant: if $\left(G_{n}\right)$ and $\left(H_{n}\right)$ are coarsely equivalent graph sequences, then $\left(G_{n}\right)$ has geometric (T) iff $\left(H_{n}\right)$ has geometric (T).

Generalization

We would like to generalise to non-discrete metric spaces.

Generalization

We would like to generalise to non-discrete metric spaces.

- (sequences of) Riemannian manifolds
- Warped systems

Bounded geometry $1 / 2$

Recall: the graphs had to have bounded degree.

Bounded geometry $1 / 2$

Recall: the graphs had to have bounded degree.

Definition

Bounded geometry for metric space: there is R, s.t. for every S, there is an N, such that: every S-ball is covered by at most N different R-balls.

Bounded geometry 2/2

Bounded geometry is coarse invariant.

Bounded geometry $2 / 2$

Bounded geometry is coarse invariant.

Theorem [W.]

X has bounded geometry iff there is a measure μ that is uniformly bounded and gordo.

Bounded geometry 2/2

Bounded geometry is coarse invariant.

Theorem [W.]

X has bounded geometry iff there is a measure μ that is uniformly bounded and gordo.

Uniformly bounded

For every R there is a C such that every R-ball has volume at most C.

Gordo

There is an R and $\epsilon>0$ such that every R-ball has volume at least ϵ.

Operators with controlled support

$$
L^{2} X=L^{2}(X, \mu) .
$$

Operators with controlled support

$$
L^{2} X=L^{2}(X, \mu) .
$$

Consider $T \in B\left(L^{2} X\right)$.

Definition (controlled support)

There is R such that for every $\xi \in L^{2} X$ supported on U, $T \xi$ is supported on $U_{R}=\{x \mid d(x, U) \leq R\}$.

Operators with controlled support

$$
L^{2} X=L^{2}(X, \mu) .
$$

Consider $T \in B\left(L^{2} X\right)$.

Definition (controlled support)

There is R such that for every $\xi \in L^{2} X$ supported on U, $T \xi$ is supported on $U_{R}=\{x \mid d(x, U) \leq R\}$.
if T and S have controlled support:
so do $T+S, T S$ and T^{*}.

Roe algebra $1 / 2$

Definition (pre-Roe algebra)

The pre-Roe algebra $\mathbb{C}_{c s}[X]$ consists of all operators in $B\left(L^{2} X\right)$ with controlled support.

Roe algebra $1 / 2$

Definition (pre-Roe algebra)

The pre-Roe algebra $\mathbb{C}_{\mathrm{cs}}[X]$ consists of all operators in $B\left(L^{2} X\right)$ with controlled support.

Definition (representation)

A representation is a $*$-homomorphism $\rho: \mathbb{C}_{\mathrm{cs}}[X] \rightarrow B(\mathcal{H})$.

Roe algebra $1 / 2$

Definition (pre-Roe algebra)

The pre-Roe algebra $\mathbb{C}_{\mathrm{cs}}[X]$ consists of all operators in $B\left(L^{2} X\right)$ with controlled support.

Definition (representation)

A representation is a $*$-homomorphism $\rho: \mathbb{C}_{\mathrm{cs}}[X] \rightarrow B(\mathcal{H})$.

Example

Canonical representation: take $\mathcal{H}=L^{2} X$ and $\rho(T)=T$.

Roe algebra 2/2

Definition (maximal norm)

$$
\|T\|_{\max }=\sup _{(\rho, \mathcal{H})}\|\rho(T)\| .
$$

Roe algebra 2/2

Definition (maximal norm)

$$
\|T\|_{\max }=\sup _{(\rho, \mathcal{H})}\|\rho(T)\| .
$$

Definition (Roe algebra)

Roe algebra $C_{\max }^{*}(X)$ is completion of $\mathbb{C}_{\text {cs }}[X]$ w.r.t. maximal norm.

Laplacians

Definition (Laplacian)

Let

$$
\begin{gathered}
\Delta_{R}: L^{2} X \rightarrow L^{2} X \\
\Delta_{R} \xi(x)=\int_{d(y, x) \leq R}(\xi(x)-\xi(y)) d \mu(y)
\end{gathered}
$$

Laplacians

Definition (Laplacian)

Let

$$
\begin{gathered}
\Delta_{R}: L^{2} X \rightarrow L^{2} X \\
\Delta_{R} \xi(x)=\int_{d(y, x) \leq R}(\xi(x)-\xi(y)) d \mu(y)
\end{gathered}
$$

$\Delta_{R} \in \mathbb{C}_{\mathrm{cs}}[X]$.

Laplacians

Definition (Laplacian)

Let

$$
\begin{gathered}
\Delta_{R}: L^{2} X \rightarrow L^{2} X \\
\Delta_{R} \xi(x)=\int_{d(y, x) \leq R}(\xi(x)-\xi(y)) d \mu(y)
\end{gathered}
$$

$\Delta_{R} \in \mathbb{C}_{\mathrm{cs}}[X]$.

If $R \geq S$ then $\Delta_{R} \geq \Delta_{S} \geq 0$.

Constant vectors

Consider representation $\rho: \mathbb{C}_{c s}[X] \rightarrow B(\mathcal{H})$.

Constant vectors

Consider representation $\rho: \mathbb{C}_{\mathrm{cs}}[X] \rightarrow B(\mathcal{H})$.

Definition (constant vectors)

$v \in \mathcal{H}$ is called constant vector if $\Delta_{R} v=0$ for all R.
Constant vectors \mathcal{H}_{c}.

Constant vectors

Consider representation $\rho: \mathbb{C}_{\mathrm{cs}}[X] \rightarrow B(\mathcal{H})$.

Definition (constant vectors)

$v \in \mathcal{H}$ is called constant vector if $\Delta_{R} v=0$ for all R.
Constant vectors \mathcal{H}_{c}.

Example

if $\mathcal{H}=L^{2} X$, constant vectors are the functions that are constant on each component.

Geometric (T)

Definition (geometric (T)) [W 2020]

X has geometric property (T) if there is R such that:

- for every representation (ρ, \mathcal{H}), we have $\mathcal{H}_{c}=\operatorname{ker}\left(\rho\left(\Delta_{R}\right)\right)$
- there is $\gamma>0$ such that $\sigma_{\max }\left(\Delta_{R}\right) \subseteq\{0\} \cup[\gamma, \infty)$.

Theorems [W 2020]

Theorem

For graphs, we have the same property as before.

Theorems [W 2020]

Theorem

For graphs, we have the same property as before.

Theorem
 Independent of chosen measure μ.

Theorems [W 2020]

Theorem

For graphs, we have the same property as before.

Theorem

Independent of chosen measure μ.

Theorem (coarse invariance)

if X and Y are coarsely equivalent, X has (T) iff Y has (T).

Theorems [W 2020]

Theorem

For graphs, we have the same property as before.

Theorem

Independent of chosen measure μ.

Theorem (coarse invariance)

if X and Y are coarsely equivalent, X has (T) iff Y has (T).

Theorem (connected spaces)

if X is connected, then X has (T) if and only if X is either bounded or not amenable.

Manifolds

Let M a Riemannian manifold (not necessarily connected). Assume: injectivity radius positive, Ricci curvature bounded below (by negative constant)

Manifolds

Let M a Riemannian manifold (not necessarily connected). Assume: injectivity radius positive, Ricci curvature bounded below (by negative constant)

Consider the Laplacian operator Δ_{M}.
For every representation (ρ, \mathcal{H}), we can consider Δ_{M} as an unbounded operator on \mathcal{H}.

Manifolds

Let M a Riemannian manifold (not necessarily connected). Assume: injectivity radius positive, Ricci curvature bounded below (by negative constant)

Consider the Laplacian operator Δ_{M}.
For every representation (ρ, \mathcal{H}), we can consider Δ_{M} as an unbounded operator on \mathcal{H}.

Theorem [W 2020]

Property (T) iff there is γ such that the spectrum of $\rho\left(\Delta_{M}\right)$ is contained in $\{0\} \cup[\gamma, \infty]$ for every representation (ρ, \mathcal{H}).

Warped systems

Let M a compact Riemannian manifold. It has a metric and a measure.
Let Γ a group generated by finite S, with m.p. action $\alpha: \Gamma \curvearrowright M$.

Warped systems

Let M a compact Riemannian manifold. It has a metric and a measure.
Let Γ a group generated by finite S, with m.p. action $\alpha: \Gamma \curvearrowright M$.

Definition (warped metric)

For positive t, we make a new metric on M : largest metric d_{t} s.t. $\left.d_{t}(x, y)\right) \leq t d(x, y)$ and $d_{t}(x, s \cdot x) \leq 1$.

Warped systems

Let M a compact Riemannian manifold. It has a metric and a measure.
Let Γ a group generated by finite S, with m.p. action $\alpha: \Gamma \curvearrowright M$.

Definition (warped metric)

For positive t, we make a new metric on M : largest metric d_{t} s.t. $\left.d_{t}(x, y)\right) \leq t d(x, y)$ and $d_{t}(x, s \cdot x) \leq 1$.

Definition (warped system)

Union $\bigsqcup_{t \in \mathbb{N}} M \times\{t\}$ with metric d_{t} on $M \times\{t\}$.

Warped systems

Let M a compact Riemannian manifold. It has a metric and a measure.
Let Γ a group generated by finite S, with m.p. action $\alpha: \Gamma \curvearrowright M$.

Definition (warped metric)

For positive t, we make a new metric on M : largest metric d_{t} s.t. $\left.d_{t}(x, y)\right) \leq t d(x, y)$ and $d_{t}(x, s \cdot x) \leq 1$.

Definition (warped system)

Union $\bigsqcup_{t \in \mathbb{N}} M \times\{t\}$ with metric d_{t} on $M \times\{t\}$.

Question: when geometric property (T)?
Possible answer: if Γ has property (T) and the action is ergodic.

