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Geometric property (T) 1/3

G = (G,) an increasing sequence of graphs, each vertex degree at
most D.
G is a metric space.
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G = (G,) an increasing sequence of graphs, each vertex degree at

most D.
G is a metric space.

Consider T € B(L?G).
We can consider T as a matrix.
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Geometric property (T) 1/3

G = (G,) an increasing sequence of graphs, each vertex degree at
most D.
G is a metric space.

Consider T € B(L?G).
We can consider T as a matrix.

Definition (controlled support)
T has controlled support if sup(d(x,y) | Tx, # 0) < cc.

In particular, T acts on each [2G,.
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Geometric property (T) 2/3

Definition (pre-Roe algebra)
Ccs[G] is the algebra of all operators with controlled support.
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Geometric property (T) 2/3

Definition (pre-Roe algebra)
Ccs[G] is the algebra of all operators with controlled support.

Example (Laplacian)

Laplacian A € C[G], given by A, , = deg(x), and A, , = —1if x
and y adjacent.
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Geometric property (T) 2/3

Definition (pre-Roe algebra)
Ccs[G] is the algebra of all operators with controlled support.

Example (Laplacian)

Laplacian A € C[G], given by A, , = deg(x), and A, , = —1if x
and y adjacent.

Always 0 € o(A) and A > 0. The graph G is an expander iff
a(A) C {0} U [y, o0) for some v > 0.
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Geometric property (T) 3/3

Definition (representation)

A representation of C.[G] is a x-homomorphism

p: CalG] — B(H).
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Definition (representation)

A representation of C.[G] is a x-homomorphism
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Definition (maximal spectrum)
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Geometric property (T) 3/3

Definition (representation)

A representation of C.[G] is a x-homomorphism

p: CalG] — B(H).

Definition (maximal spectrum)

Definition ( Willett, Yu 2010: Geometric property (T) )

G has geometric property (T): there is 7 > 0 with
omax(A) € {0} U [, 00).
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Example (box space)

Let G a group, normal subgroups G; D G, O - -

and (), G, = {1}
Finitely generated by S.
Box space is union of Cayley graphs G/G,.

with G /G, finite
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Example (box space)

Let G a group, normal subgroups G; O G, O - -+ with G/G, finite
and (), G, = {1}

Finitely generated by S.

Box space is union of Cayley graphs G/G,.

Theorem [Willett-Yu]
G has property (T) iff | | G/G, has geometric property (T).
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Coarse equivalence 1/3

Let X and Y be metric spaces.

Definition (coarsely equivalent)

X and Y are coarsely equivalent if they look roughly the same if you
look from afar.
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Coarse equivalence 1/3

Let X and Y be metric spaces.

Definition (coarsely equivalent)

X and Y are coarsely equivalent if they look roughly the same if you
look from afar.
Concretely: there are f: X — Y and g: Y — X such that

d(f(x), f(x")) < p(d(x, x")

d(g(y),g(y") < p(d(y,y")
d(fg(y),y) < C
d(gf(x),x) < C.
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equivalence 2/3
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Coarse equivalence 3/3

Theorem [Willett-Yu]

Geometric property (T) is coarse invariant:

if (G,) and (H,) are coarsely equivalent graph sequences, then (G,)
has geometric (T) iff (H,) has geometric (T).

Jeroen Winkel Geometric (T) 10 June 2021 8/20



Generalization

We would like to generalise to non-discrete metric spaces.
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Generalization

We would like to generalise to non-discrete metric spaces.

@ (sequences of) Riemannian manifolds

@ Warped systems
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Bounded geometry 1/2

Recall: the graphs had to have bounded degree.
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Bounded geometry 1/2

Recall: the graphs had to have bounded degree.

Definition

Bounded geometry for metric space: there is R, s.t. for every S,
there is an N, such that:

every S-ball is covered by at most N different R-balls.
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Bounded geometry 2/2

Bounded geometry is coarse invariant.
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Bounded geometry 2/2

Bounded geometry is coarse invariant.

X has bounded geometry iff there is a measure p that is uniformly
bounded and gordo.
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Bounded geometry 2/2

Bounded geometry is coarse invariant.

X has bounded geometry iff there is a measure p that is uniformly
bounded and gordo.

Uniformly bounded

For every R there is a C such that every R-ball has volume at most
C.

There is an R and € > 0 such that every R-ball has volume at least . \
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Operators with controlled support

12X = [2(X, ).
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Operators with controlled support

12X = [2(X, ).

Consider T € B(L?X).

Definition (controlled support)

There is R such that for every £ € L?X supported on U,
T¢ is supported on Ug = {x | d(x, U) < R}.
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Operators with controlled support

12X = [2(X, ).

Consider T € B(L?X).

Definition (controlled support)

There is R such that for every £ € L?X supported on U,
T¢ is supported on Ug = {x | d(x, U) < R}.

if T and S have controlled support:
sodo T+S, TS and T*.
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Roe algebra 1/2

Definition (pre-Roe algebra)

The pre-Roe algebra C[X] consists of all operators in B(L?X) with
controlled support.
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Roe algebra 1/2

Definition (pre-Roe algebra)

The pre-Roe algebra C[X] consists of all operators in B(L?X) with
controlled support.

Definition (representation)

A representation is a x-homomorphism p: C[X] — B(H).
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Roe algebra 1/2

Definition (pre-Roe algebra)

The pre-Roe algebra C[X] consists of all operators in B(L?X) with
controlled support.

Definition (representation)

A representation is a x-homomorphism p: C[X] — B(H).

Canonical representation: take H = L2X and p(T) = T.
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Roe algebra 2/2

Definition (maximal norm)

|| 7-||max = sl HP(T)” :
(p,H)
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Roe algebra 2/2

Definition (maximal norm)

|| 7-||max = sl HP(T)” :
(p,H)

Definition (Roe algebra)

Roe algebra C;, (X) is completion of Cc[X] w.r.t. maximal norm.
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Laplacians

Definition (Laplacian)
Let

Ag: 00— 12
Art(x) = / ERGOREOTO!
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Laplacians

Definition (Laplacian)
Let

Ag: 00— 12
Art(x) = / ERGOREOTO!

Ag € C|X].
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Laplacians

Definition (Laplacian)
Let

Ag: 00— 12
Art(x) = / ERGOREOTO!

Ag € C|X].

If R > S then Ag > As > 0.
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Constant vectors

Consider representation p: Ce[X] — B(H).
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Constant vectors

Consider representation p: Ce[X] — B(H).

Definition (constant vectors)

v € H is called constant vector if Agrv = 0 for all R.

Constant vectors H..
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Constant vectors

Consider representation p: Ce[X] — B(H).

Definition (constant vectors)

v € H is called constant vector if Agrv = 0 for all R.

Constant vectors H..

if 4 = L?X, constant vectors are the functions that are constant on
each component.
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Geometric (T)

Definition (geometric (T)) [W 2020]

X has geometric property (T) if there is R such that:
o for every representation (p, ), we have H. = ker(p(Ag))
@ there is v > 0 such that o,ax(Ag) C {0} U [y, 00).
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Theorems [W 2020]
For graphs, we have the same property as before. \
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Theorems [W 2020]

For graphs, we have the same property as before. \
Independent of chosen measure p. \
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Theorems [W 2020]

For graphs, we have the same property as before. \
Independent of chosen measure p. \

Theorem (coarse invariance)
if X and Y are coarsely equivalent, X has (T) iff Y has (T).
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Theorems [W 2020]

For graphs, we have the same property as before. \

Independent of chosen measure p. \

Theorem (coarse invariance)
if X and Y are coarsely equivalent, X has (T) iff Y has (T).

Theorem (connected spaces)

if X is connected, then X has (T) if and only if X is either bounded
or not amenable.
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Manifolds

Let M a Riemannian manifold (not necessarily connected).
Assume: injectivity radius positive, Ricci curvature bounded below
(by negative constant)
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Manifolds

Let M a Riemannian manifold (not necessarily connected).
Assume: injectivity radius positive, Ricci curvature bounded below
(by negative constant)

Consider the Laplacian operator Ayy.

For every representation (p, H), we can consider Ay as an
unbounded operator on H.
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Manifolds

Let M a Riemannian manifold (not necessarily connected).
Assume: injectivity radius positive, Ricci curvature bounded below
(by negative constant)

Consider the Laplacian operator Ayy.
For every representation (p, H), we can consider Ay as an
unbounded operator on H.

Theorem [W 2020]

Property (T) iff there is 7y such that the spectrum of p(Apy) is
contained in {0} U [y, oo] for every representation (p, H).
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Warped systems

Let M a compact Riemannian manifold. It has a metric and a
measure.
Let [ a group generated by finite S, with m.p. action a: I ~ M.
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Warped systems

Let M a compact Riemannian manifold. It has a metric and a
measure.
Let [ a group generated by finite S, with m.p. action a: I ~ M.

Definition (warped metric)

For positive t, we make a new metric on M: largest metric d; s.t.
di(x,y)) < td(x, y) and di(x,s - x) < 1.
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Warped systems

Let M a compact Riemannian manifold. It has a metric and a
measure.
Let [ a group generated by finite S, with m.p. action a: I ~ M.

Definition (warped metric)

For positive t, we make a new metric on M: largest metric d; s.t.
di(x,y)) < td(x, y) and di(x,s - x) < 1.

Definition (warped system)
Union | |,.\ M x {t} with metric d; on M x {t}.
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Warped systems

Let M a compact Riemannian manifold. It has a metric and a
measure.
Let [ a group generated by finite S, with m.p. action a: I ~ M.

Definition (warped metric)

For positive t, we make a new metric on M: largest metric d; s.t.
di(x,y)) < td(x, y) and di(x,s - x) < 1.

Definition (warped system)
Union | |,.\ M x {t} with metric d; on M x {t}.

Question: when geometric property (T)?

Possible answer: if I has property (T) and the action is ergodic.
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