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COARSE GEOMETRY

”Study metric spaces from a large–scale perspective” (Gromov, Roe).

DEFINITION

An f : X→ Y is a coarse embedding, if there exist ρ+,ρ− : R+→ R+,
ρ−↗ ∞, with ρ−(d(x,y))≤ d(f (x), f (y))≤ ρ+(d(x,y)) for x,y ∈ X.
A c. emb. f is a coarse equivalence (∼c), if supy∈Y d(y, f (X))< ∞.

Why? Theorems in geometry (6 ∃ PSC metrics), topology (Novikov
conjecture) via functional analysis (Roe algebras).
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HITCHHIKER’S GUIDE TO COARSE PROPERTIES

Finite asymptotic dimension
⇓

Finite decomposition complexity (FDC)
⇓

Property A (aka MSP, ONL, . . . )
⇓

Coarse embeddability into `2

⇓
Coarse embeddability into `p

—
Here be dragons

(mostly expanders)
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ROE ALGEBRAS

Let (X,d) be a discrete metric space with bounded geometry.
(bdd.geom. means ∀R≥ 0: supx∈X |B(x,R)|< ∞.)
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Roe algebras are C*- (or Banach-) algebras
which encode the coarse geometry of X.

An operator T = (Tyx)x,y∈X

on `2X has finite propagation
(or a band operator) if ∃R≥ 0,
such that d(x,y)≥ R implies Tyx = 0.

These form a ∗-algebra in B(`2X). Its
norm closure is called C∗uX, the uniform Roe algebra of X.
[ Can also do `pX for p ∈ [1,∞]. ]

So the elements of C∗uX are norm-limits of finite propagation
operators; a.k.a. band-dominated operators.

Proposition: X ∼c Y =⇒ C∗uX and C∗uY are (stably) isomorphic.
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RIGIDITY OF ROE ALGEBRAS

Results of the sort “C∗uX ' C∗uY =⇒ X ' Y”.
. . . for the appropriate versions of “'”.

Usually require some assumption on X and/or Y .

For example: [S-Willett ’10]
“C∗uX⊗K ∼= C∗uY⊗K and X has Property A =⇒ X ∼c Y”

Many more results now; work of Braga, Farah, Vignati, Chung, Li,. . .
• stronger conclusions (e.g. bijective c.eq.)
• more general X (coarse spaces)
• ”embeddings” versions: replace ' by→
• weaker assumptions (e.g. coarse embeddability into `2; or a

’technical condition’)
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A RIGIDITY RESULT
Let X and Y be metric spaces of bounded geometry.

THEOREM (LI-S-ZHANG)

If X contains no sparse subspaces which form a ghostly measured
asymptotic expander, then C∗uX⊗K ∼= C∗uY⊗K =⇒ X ∼c Y.

(Y ⊆ X is sparse, if Y = tnYn, each Yn is finite, and d(Ym,Yn)→ ∞.)
(X = tnGn is an e.an a.e.a m.a.e. if ∃ prob. measures mn on Gn s.t.
∀α ∈ (0, 1

2 ]:

infn inf
{
|∂A|
|A| | A⊂ Gn,0 < |A| ≤ |Gn|

2

}
> 0.

infn inf
{
|∂A|
|A| | A⊂ Gn,α|A|< |A| ≤ |Gn|

2

}
> 0.

infn inf
{

mn(∂A)
mn(A)

| A⊂ Gn,αmn(Gn)< mn(A)≤ mn(Gn)
2

}
> 0.

It is ghostly if and limn supx∈Gn
mn(x) = 0.)

COROLLARY (L-S-Z)

Assume that X coarsely embeds into `p, p ∈ [1,∞). Same conclusion.

THEOREM (L-S-Z)

The spaces constructed by Arzhantseva–Tessera (’12) and
Delabie–Khukhro – which do not contain expanders, nor coarsely
embed into any `p – satisfy the assumption of the Theorem above.
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QUASI-LOCALITY

T ∈B(`2X) has finite propagation ⇐⇒
∃R≥ 0 ∀A,B⊂ X with d(A,B)≥ R we have χATχB = 0.

If T ∈ C∗uX, then ∀ε > 0
∃R≥ 0 ∀A,B⊂ X with d(A,B)≥ R we have ‖χATχB‖< ε .

We say that T ∈B(`2X) is quasi-local, if ∀ε > 0 ... (that condition ↑).
Question: Does every quasi-local operator on `2X belong to C∗uX?

A remark in J Roe’s CBMS 1996 book. Answers: yes, if...

• X = Zn: Rabinovich–Roch–Silbermann (uses Fourier transform).

• X has polynomial growth: A Engel, 2016

• X has straight FDC; Tikuisis–S, 2016

• X has Property A; S–Zhang, 2018

How about a counterexample (i.e. a quasi-local operator not in the
Roe algebra)?
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EXPANDERS
• For a finite graph G, the graph Laplacian is ∆G ∈B(`2G) given

by ∆Gξ (x) = ξ (x)−∑y∼x
1√

deg(x)deg(y)
ξ (y).

• ∆G has propagation 1.
• ∆G ≥ 0; denote λG the smallest non-zero eigenvalue of ∆G.
• G connected =⇒ 0-eigenspace is spanned by f (x) =

√
deg(x).

• Denote PG ∈B(`2G) the 0-spectral projection.
A sequence (Gn)n of (connected) finite graphs is an expander, if
• sup{dx | n ∈ N,x ∈ Gn}< ∞; |Gn| → ∞

• infn λGn > 0.
⇐⇒ infn inf

{
|∂A|
|A| | A⊂ Gn,0 < |A| ≤ |Gn|

2

}
> 0

(”Cheeger constants” uniformly away from 0)
Denote X = tnGn. Then ⊕n∆Gn ∈ C∗uX.
If (Gn)n is an expander, then (spectral gap =⇒ ) P =⊕nPGn ∈ C∗uX .
This P is a ”ghost projection” (its matrix entries go to zero, but it is
not compact). [Counterexample to coarse Baum-Connes conjecture.]
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ASYMPTOTIC EXPANDERS

Find a space X = tGn where P is quasi-local, but not in C∗uX?

But... no. P is quasi-local
⇐⇒ X is an asymptotic expander [Nowak-Li-S-Zhang]
∀α ∈ (0, 1

2 ]: inf
{
|∂A|
|A| | A⊂ Gn,α|Gn|< |A| ≤ |Gn|

2 ,n ∈ N
}
> 0

⇐⇒ P ∈ C∗uX [Khukhro-Li-Vigolo-Zhang]

Thm: [KLVZ] X = tnGn is an asymptotic expander if and only if it
admits ”uniform exhaustion by expanders”:

There exist sequences {αk > 0}k, {ck > 0}k, such that αk→ 0, and
subsets Yn,k ⊆ Xn such that {Yn,k}n is a ck-expander and
|Yn,k| ≥ (1−αk)|Xn| for every n,k.

( =⇒ If X is an a.e., then P is approximated in norm by averaging
projections on the expanders that exhaust X.)

[KLVZ] also prove: If an asymptotic expander is ”symmetric” (e.g.
the graphs are vertex-transitive), then it is an expander.
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MEASURED VERSION

How about S =⊕Sn ∈B(`2X) where Sn ∈B(`2Gn) is a rank one
projection? (A ”block-rank-one” projection.)

Still no. S is quasi-local
⇐⇒ X is a measured asymptotic expander:
∃ probability measures mn on Gn so that ∀α ∈ (0, 1

2 ]:

infn inf
{

mn(∂A)
mn(A)

| A⊂ Gn,αmn(Gn)< mn(A)≤ mn(Gn)
2

}
> 0

⇐⇒ S ∈ C∗uX [Li-S-Zhang]

—

Formulas: S =⊕Sn  Sn = 〈.|ξn〉ξn  mn(x) = |ξn(x)|2
Also: ‖χASnχB‖= ‖χAξn‖‖χBξn‖=

√
mn(A)mn(B)

Thus: S quasi-local ⇐⇒
0 = limR→∞ sup{mn(A)mn(B) : n ∈ N, A,B⊆ Xn, d(A,B)≥ R}
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MEASURED ASYMPTOTIC EXPANDERS

Def: X = tnGn is a measured asymptotic expander if there exist
probability measures mn on Gn so that ∀α ∈ (0, 1

2 ]:

infn inf
{

mn(∂A)
mn(A)

| A⊂ Gn,αmn(Gn)< mn(A)≤ mn(Gn)
2

}
> 0.

It is ghostly if and limn supx∈Gn
mn(x) = 0.

• ... don’t embed into any Lp-space, p ∈ [1,∞).
• ... examples? hm....
• ... satisfy a Structure Theorem (like asymptotic expanders), with:

Def: A sequence (Gn,mn) of measured graphs (mn: full measures) is a
measured expander, if:

infn inf
{

mn(∂A)
mn(A)

| A⊂ Gn,0 < mn(A)≤ mn(Gn)
2

}
> 0.
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A LITTLE ABOUT MEASURED EXPANDERS
Def: The Cheeger constant of a measured graph (G,m) is
ch(G,m) = inf

{
m(∂A)
m(A) | A⊂ G,0 < m(A)≤ m(G)

2

}
.

Def: A sequence (Gn,mn) of measured graphs (mn: full measures) is a
measured expander, if: infn ch(Gn,mn)> 0.
• We don’t have a nice positive graph Laplacian...
• ... unless the measures come from random walks (i.e. weights on

edges).
• So to do anything, we need an extra assumptions: ”bounded

measure ratio” (the quantity m(x)/m(y) is bounded from below
and above by some s > 0, for every edge x∼ y) and bounded
valency.
• With this, we can get Poincarè inequalities:

∑
x∼y
|f (x)− f (y)|p(m(x)+m(y))≥ cp ∑

x,y
|f (x)− f (y)|p m(x)m(y)

m(G) .

• Examples come from actions on prob. measure spaces with a
spectral gap.
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AN EXAMPLE OF A MEASURED EXPANDER

... WHICH IS NOT AN EXPANDER (BY GÁBOR ELEK)

Let G be a graph. Endow it with the normalised counting measure µ .
Endow the graph G∞ := G×N0 with the measure µ∞ which restricts
to 2−k on G×{k}. (Then µ∞(G∞) = 2.)

Exercise: If the Cheeger constant of G is at least c > 0, then the
Cheeger constant of G∞ is at least min(c/18,1/8).

Let (Gn)n be an expander, endowed with normalised counting
measures mn.
Let Xn = Gn×{0, . . . ,n}, with the measure mn which restricts from
G∞

n .

Then (Xn)n is a measured expander, which is not an expander.
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A RIGIDITY RESULT (AGAIN)

Let X and Y be metric spaces of bounded geometry.

THEOREM (LI-S-ZHANG)

If X contains no sparse subspaces which form a ghostly measured
asymptotic expander, then C∗uX⊗K ∼= C∗uY⊗K =⇒ X ∼c Y.

COROLLARY (L-S-Z)

Assume that X coarsely embeds into `p, p ∈ [1,∞). Same conclusion.

THEOREM (L-S-Z)

The spaces constructed by Arzhantseva–Tessera (’12) and
Delabie–Khukhro – which do not contain expanders, nor coarsely
embed into any `p – satisfy the assumption of the Theorem above.
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”SOME DETAILS”

About the proof: Essentially just a small improvement on existing
proofs of B-F-V, B-C-L:
Their ”technical condition” says ”no sparse subspaces yield
non-compact ghost projections”.

We improve to ”no sparse subspaces yield non-compact
block-rank-one ghost projections”.

Then show that ”containing a gmae” implies there is a sparse
subspace with a ghost block-rank-one projection.
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A CONNECTION TO THE COARSE BAUM–CONNES

CONJECTURE

(somewhat tentative ...)

THEOREM

Let X = tnXn. If X admits a fibred coarse embedding into a Hilbert
space, and X ”coarsely contains” a gmae, then:

(1) The coarse Baum–Connes assembly map µ for X is injective but
non-surjective.

(2) ι∗ : K∗(K )→ K∗(IG) is injective but non-surjective, where IG is
the ghost ideal IG C C∗(X).

(3) π∗ : K∗(C∗max(X))→ K∗(C∗(X)) is injective but non-surjective.
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QUESTIONS...

• More examples...
• Rigidity of Roe algebras for (measured?) expanders?
• Quasi-local operators that are not in Roe algebras?
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Thank you!
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