Fixed point spectrum of random groups

Izhar Oppenheim

Ben-Gurion University

Izhar Oppenheim Fixed point spectrum of random groups

The fixed point spectrum

Throughout: Γ is a finitely generated group.

- For a Banach space E, Γ has FE if every affine isometric action of Γ on E has a fixed point.
- The (ℓ_{p}) fix point spectrum of Γ is the set

$$\mathcal{F}_{\ell_{\infty}}(\Gamma) = \{ p \in [1,\infty) : \Gamma \text{ has } F\ell_{p} \}$$

• (Czuron 14' ,Lavy & Olivier 14') $\mathcal{F}_{\ell_\infty}(\Gamma)$ is always in one of these forms:

$$\emptyset, [1, p_{\Gamma}], [1, p_{\Gamma}), [1, p_{\Gamma}] \setminus \{2\}, [1, p_{\Gamma}) \setminus \{2\}$$

The fixed point spectrum (2)

- If Γ has property (T), then $\mathcal{F}_{\ell_{\infty}}(\Gamma)$ is either $[1, p_{\Gamma}]$ or $[1, p_{\Gamma})$ ($p_{\Gamma} \in (2, \infty]$).
- Several groups are known to have strong versions of property (T) that imply that their f.p. spectrum is [1,∞), e.g., by (Mimura 10') *F*_{ℓ∞}(SL_n(ℤ[x₁,...,x_k])) = [1,∞) for every n ≥ 4.
- (Yu 05', Nica 13', Bourdon 16') If Γ is δ-hyperbolic, then there exists p < ∞ such that p ∉ F_{ℓ∞}(Γ). Bourdon: p_Γ ≤ the conformal dimension of ∂_∞Γ.

Random groups in the triangular models

- For a fixed density d ∈ (0, 1), a random group in the triangular model M(m, d) is a group Γ = ⟨S|R⟩ with |S| = m (S ∩ S⁻¹ = Ø) and R is a set of ⌊(2m − 1)^{3d}⌋ cyclically reduced relations of length 3 chosen randomly among all the sets with this cardinality.
- For a function ρ(m), a random group in the binomial triangular model Γ(m, ρ) is a group Γ = ⟨S|R⟩ with |S| = m (S ∩ S⁻¹ = ∅) and R is a set relations of length 3 chosen independently with probability ρ.
- The model $\mathcal{M}(m, d)$ for a fixed $\frac{1}{3} < d < \frac{1}{2}$ "behaves the same as" $\Gamma(m, \rho)$ with $\rho = \frac{1}{(2m-1)^{3(1-d)}}$.

Properties of $\Gamma \in \Gamma(m, \rho)$

We say that $\Gamma \in \Gamma(m, \rho)$ has some group property P with over whelming probability (w.o.p) if

$$\lim_{m\to\infty}\mathbb{P}(\mathsf{\Gamma}\in\mathsf{\Gamma}(m,\rho) \text{ has }\mathsf{P})=1$$

Fix $\frac{1}{3} < d < \frac{1}{2}$ and let $\rho = \frac{1}{(2m-1)^{3(1-d)}}$. The following holds for group $\Gamma \in \Gamma(m, \rho)$ w.o.p:

- (Ollivier) Γ is infinite and δ -hyperbolic.
- (Zuk) Γ has property (T).

Fixed point spectrum of $\Gamma \in \Gamma(m, \rho)$

From previous discussion, w.o.p there is $2 < p_{\Gamma}(d,m) < \infty$ such that

$$\mathcal{F}_{\ell_{\infty}}(\Gamma) = [1, p_{\Gamma}] ext{ or } [1, p_{\Gamma})$$

Results regarding p_{Γ} :

• (Drutu & Mackay 17') There are constants c_d , C_d such that

$$c_d \sqrt{rac{\log m}{\log \log m}} < p_{\Gamma} < C_d \log m$$

- (de Laat & de la Salle 18') Improved lower bound: $c_d \sqrt{\log m} < p_{\Gamma}$.
- (Oppenheim 21') Sharp lower bound: $c_d \log m < p_{\Gamma}$.

Two-sided spectral expanders (1)

- Let (V, E) be a finite graph and \mathbb{E} be a Banach space.
- Define $\ell_2(V; \mathbb{E})$ to be the space of functions $\phi: V \to \mathbb{E}$ with norm

$$\|\phi\|^2 = \sum_{\mathbf{v}\in V} \mathsf{deg}(\mathbf{v}) \|\phi\|^2_{\mathbb{E}}$$

• Define $A_{\mathbb{E}}, M_{\mathbb{E}} : \ell_2(V; \mathbb{E}) \to \ell_2(V; \mathbb{E})$ by

$$A_{\mathbb{E}}\phi(v) = rac{1}{\deg(v)}\sum_{u\sim v}\phi(u),$$

$$M_{\mathbb{E}}\phi \equiv rac{1}{\sum_{u} \deg(u)} \sum_{u} \deg(u)\phi(u).$$

Two-sided spectral expanders (2)

For $\lambda \in \mathbb{R}$, we say that (V, E) is a (\mathbb{E}, λ) -two-sided spectral expander if

$$\|A_{\mathbb{E}}(I-M_{\mathbb{E}})\|_{B(\ell_2(V;\mathbb{E}))} \leq \lambda$$

Remarks:

- For every \mathbb{E} , every graph is a $(\mathbb{E}, 2)$ -two-sided spectral expander.
- Por E = R (or any Hilbert space), the definition coincides with the usual definition of what we'll call a classical λ-two-sided spectral expander: (V, E) is connected and the non-trivial spectrum of the SRW is contained in [-λ, λ].

Riesz-Thorin Theorem and two-sided spectral expansion

(Riesz-Thorin) For every $p = \frac{2}{\theta}$, $0 < \theta < 1$, it holds for every graph (V, E) that

$$\begin{split} \|A_{\ell_{p}}(I-M_{\ell_{p}})\|_{B(\ell_{2}(V;\ell_{p}))} \leq \\ \|A_{\ell_{2}}(I-M_{\ell_{2}})\|_{B(\ell_{2}(V;\ell_{2}))}^{\theta}\|A_{\ell_{\infty}}(I-M_{\ell_{\infty}})\|_{B(\ell_{2}(V;\ell_{\infty}))}^{1-\theta} \leq \\ 2\|A_{\ell_{2}}(I-M_{\ell_{2}})\|_{B(\ell_{2}(V;\ell_{2}))}^{\theta} \end{split}$$

i.e., if (V, E) is a classical λ -two-sided expander, it follows that it is $(\ell_{\frac{2}{a}}, 2\lambda^{\theta})$ -two-sided expander.

Link in a simplicial complex

For a simplex $v \in X(0)$, the **link of** v is a subcomplex

$$X_{\mathbf{v}} = \{\eta \in X : \mathbf{v} \notin \eta = \emptyset, \{\mathbf{v}\} \cup \eta \in X\}.$$

Zuk's criterion for reflexive spaces

Theorem (Oppenheim 2020)

Let Γ f.g. group, X a simply connected 2-dim. complex, \mathbb{E} a reflexive Banach space. Assume that $\Gamma \curvearrowright X$ geometrically. If there is $\lambda < \frac{1}{2}$ such that for every $v \in X(0)$, the link of v is a (\mathbb{E}, λ) -two-sided spectral expander, then Γ has $F\mathbb{E}$.

Remarks:

- For Γ ∈ Γ(m, ρ), the presentation complex X_Γ is a simply connected 2-dim. simplicial complex on which Γ acts geometrically.
- For Hilbert spaces, this is weaker than the classical Zuk's criterion that requires only one-sided spectral gap.

Bound on p_{Γ} for $\Gamma \in \Gamma(m, \rho)$

Fix
$$\frac{1}{3} < d < \frac{1}{2}$$
 and $\rho = \frac{1}{(2m-1)^{3(1-d)}}$, and let $\Gamma \in \Gamma(m, \rho)$.

- (de Laat & de la Salle) w.o.p there is a constant L such that the link of a vertex in X_{Γ} is a classical $\frac{L}{m^{\frac{3}{2}d-\frac{1}{2}}}$ -two-sided expander.
- Applying Riesz-Thorin, it follows that w.o.p for every $0 < \theta < 1$, the link of a vertex in X_{Γ} is a $(\ell_{\frac{2}{\theta}}, 2\frac{L^{\theta}}{m^{(\frac{3}{2}d-\frac{1}{2})\theta}})$ -two-sided expander.
- Thus for every $p < \frac{\log(\frac{3}{2}d \frac{1}{2})}{\log(4L)} \log(m)$, w.o.p there is $\lambda < \frac{1}{2}$ such that the link of a vertex in X_{Γ} is a (ℓ_p, λ) -two-sided expander.
- Applying the variation of Zuk's criterion above shows that w.o.p $p_{\Gamma} > c_d \log(m)$.

Proof - cohomological set up (1)

X 2-dim. simply connected, $\Gamma \curvearrowright X$ geom., \mathbb{E} a Banach space and $\pi : \Gamma \to O(\mathbb{E})$ a representation. To avoid complications also assume free action of Γ on X. For $0 \le k \le 2$, the space of k-cochains twisted by π denoted

by $C^k(X, \pi)$ is the space of all maps $\phi : \vec{X}(k) \to \mathbb{E}$ that are:

- Anti-symmetric: for every permutation $\sigma \in \text{Sym}(\{0, ..., k\})$ and every $(v_0, ..., v_k) \in \vec{X}(k)$, $\phi((v_{\sigma(0)}, ..., v_{\sigma(k)})) = (-1)^{\text{sgn}(\sigma)}\phi((v_0, ..., v_k))$.
- Equivariant (w.r.t π): for every $g \in G$ and every $(v_0, ..., v_k) \in \vec{X}(k)$,

$$\phi(g.(v_0,...,v_k)) = \pi(g)\phi((v_0,...,v_k)).$$

Proof - cohomological set up (2)

Define the differential $d_k: C^k(X,\pi) \to C^{k+1}(X,\pi)$ by

$$d_k\phi((v_0,...,v_{k+1})) = \sum_{i=0}^{k+1} (-1)^i \phi((v_0,...,\hat{v}_i,...,v_{k+1}))$$

Fact: $F\mathbb{E} \Leftrightarrow H^1(X, \pi) = \frac{\ker(d_1)}{\operatorname{Im}(d_0)} = 0$ for every π .

Proof - Norm and coupling

Define the norm on $C^k(X, \pi)$ as

$$\|\phi\|^2 = \sum_{\tau \in \Gamma \setminus \vec{X}(k)} m(\tau) |\phi(\tau)|_{\mathbb{E}}^2$$

where $m(\tau) = (2 - k)! | \{ \sigma \in X(2) : \tau \subseteq \sigma \} |$. For the adjoint representation $\overline{\pi} : \Gamma \to O(\mathbb{E}^*)$, define $C^k(X, \overline{\pi})$ similarly and define $\overline{d_k} : C^k(X, \overline{\pi}) \to C^{k+1}(X, \overline{\pi})$. Define a coupling between $C^k(X, \pi)$ and $C^k(X, \overline{\pi})$ by

$$\langle \phi, \psi \rangle = \sum_{\tau \in \Gamma \setminus \vec{X}(k)} m(\tau) \langle \phi(\tau), \psi(\tau) \rangle$$

Proof - Nowak's Theorem

With the coupling above, take

$$d_k^*: C^{k+1}(X,\overline{\pi}) \to C^k(X,\overline{\pi}),$$

 $\overline{d_k}^*: C^{k+1}(X,\pi) \to C^k(X,\pi).$

Theorem (Nowak 12')

Assume that \mathbb{E} is reflexive and X, Γ as above. If there is a constant C < 1 such that for every $\phi \in C^1(X, \pi), \psi \in C^1(X, \pi)$ it holds that

$$|\langle d_1\phi, \overline{d_1}\psi\rangle| + |\langle \overline{d_0}^*\phi, d_0^*\psi\rangle| \ge |\langle \phi, \psi\rangle| - C\frac{\|\phi\|^2 + \|\psi\|^2}{2}$$

Then $H^1(X, \pi) = 0$.

Proof - Garland's method

Localization for
$$\phi \in C^1(X, \pi)$$
 (or $\psi \in C^1(X, \overline{\pi})$)
 $\phi_v(u) = \phi((v, u))$

$$2\|\phi\|^{2} = \sum_{\nu \in \Gamma \setminus X(0)} \|\phi_{\nu}\|_{\nu}^{2}, 2\|\psi\|^{2} = \sum_{\nu \in \Gamma \setminus X(0)} \|\psi_{\nu}\|_{\nu}^{2}$$

$$\langle \overline{d_0}^* \phi, d_0^* \psi \rangle = \sum_{\nu \in \Gamma \setminus X(0)} \langle (M_\nu)_{\mathbb{E}} \phi_\nu, \psi_\nu \rangle_\nu$$

$$\langle d_1\phi, \overline{d_1}\psi \rangle = \langle \phi, \psi \rangle - \sum_{\mathbf{v} \in \Gamma \setminus \mathbf{X}(0)} \langle (\mathbf{A}_{\mathbf{v}})_{\mathbb{E}}\phi_{\mathbf{v}}, \psi_{\mathbf{v}} \rangle_{\mathbf{v}}.$$

Proof - computations

$$\begin{split} \langle d_{1}\phi, \overline{d_{1}}\psi \rangle + \langle \overline{d_{0}}^{*}\phi, d_{0}^{*}\psi \rangle &= \\ \langle \phi, \psi \rangle - \sum_{\nu \in \Gamma \setminus X(0)} \langle (A_{\nu})_{\mathbb{E}}\phi_{\nu}, \psi_{\nu} \rangle_{\nu} - \langle (M_{\nu})_{\mathbb{E}}\phi_{\nu}, \psi_{\nu} \rangle_{\nu} = {}^{M_{\nu} = A_{\nu}M_{\nu}} \\ \langle \phi, \psi \rangle - \sum_{\nu \in \Gamma \setminus X(0)} \langle ((A_{\nu})_{\mathbb{E}}(I - (M_{\nu})_{\mathbb{E}})\phi_{\nu}, \psi_{\nu} \rangle_{\nu} \end{split}$$

Proof - computations (2)

$$\begin{split} |\langle d_{1}\phi, \overline{d_{1}}\psi\rangle| + |\langle \overline{d_{0}}^{*}\phi, d_{0}^{*}\psi\rangle| \geq \\ |\langle \phi, \psi\rangle| - \sum_{\nu \in \Gamma \setminus X(0)} |\langle ((A_{\nu})_{\mathbb{E}}(I - (M_{\nu})_{\mathbb{E}})\phi_{\nu}, \psi_{\nu}\rangle_{\nu}| \geq \\ |\langle \phi, \psi\rangle| - \sum_{\nu \in \Gamma \setminus X(0)} \|(A_{\nu})_{\mathbb{E}}(I - (M_{\nu})_{\mathbb{E}})\|\|\phi_{\nu}\|\|\psi_{\nu}\| \geq \\ |\langle \phi, \psi\rangle| - \sum_{\nu \in \Gamma \setminus X(0)} \lambda \frac{\|\phi_{\nu}\|^{2} + \|\psi_{\nu}\|^{2}}{2} = \\ |\langle \phi, \psi\rangle| - 2\lambda \frac{\|\phi\|^{2} + \|\psi\|^{2}}{2} \end{split}$$

and we a done by Nowak's Theorem

Final remarks

- The same method applies for higher cohomology and other Banach spaces (commutative and non-commutative *L^p* spaces, uniformly curved spaces).
- The case where the links are bipartite is not treated in my method (was treated by Drutu and Mackay).

Thank you for listening