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The fixed point spectrum

Throughout: Γ is a finitely generated group.

For a Banach space E, Γ has FE if every affine isometric
action of Γ on E has a fixed point.

The (`p-) fix point spectrum of Γ is the set

F`∞(Γ) = {p ∈ [1,∞) : Γ has F `p}

(Czuron 14’ ,Lavy & Olivier 14’) F`∞(Γ) is always in one
of these forms:

∅, [1, pΓ], [1, pΓ), [1, pΓ] \ {2}, [1, pΓ) \ {2}
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The fixed point spectrum (2)

If Γ has property (T), then F`∞(Γ) is either [1, pΓ] or
[1, pΓ) (pΓ ∈ (2,∞]).

Several groups are known to have strong versions of
property (T) that imply that their f.p. spectrum is [1,∞),
e.g., by (Mimura 10’) F`∞(SLn(Z[x1, ..., xk ])) = [1,∞)
for every n ≥ 4.

(Yu 05’, Nica 13’, Bourdon 16’) If Γ is δ-hyperbolic, then
there exists p <∞ such that p /∈ F`∞(Γ). Bourdon:
pΓ ≤ the conformal dimension of ∂∞Γ.
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Random groups in the triangular models

For a fixed density d ∈ (0, 1), a random group in the
triangular model M(m, d) is a group Γ = 〈S |R〉 with
|S | = m (S ∩ S−1 = ∅) and R is a set of b(2m − 1)3dc
cyclically reduced relations of length 3 chosen randomly
among all the sets with this cardinality.

For a function ρ(m), a random group in the binomial
triangular model Γ(m, ρ) is a group Γ = 〈S |R〉 with
|S | = m (S ∩ S−1 = ∅) and R is a set relations of length
3 chosen independently with probability ρ.

The model M(m, d) for a fixed 1
3
< d < 1

2
”behaves the

same as” Γ(m, ρ) with ρ = 1
(2m−1)3(1−d) .
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Properties of Γ ∈ Γ(m, ρ)

We say that Γ ∈ Γ(m, ρ) has some group property P with over
whelming probability (w.o.p) if

lim
m→∞

P(Γ ∈ Γ(m, ρ) has P) = 1

Fix 1
3
< d < 1

2
and let ρ = 1

(2m−1)3(1−d) . The following holds for

group Γ ∈ Γ(m, ρ) w.o.p:

(Ollivier) Γ is infinite and δ-hyperbolic.

(Zuk) Γ has property (T).
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Fixed point spectrum of Γ ∈ Γ(m, ρ)

From previous discussion, w.o.p there is 2 < pΓ(d ,m) <∞
such that

F`∞(Γ) = [1, pΓ] or [1, pΓ)

Results regarding pΓ:

(Drutu & Mackay 17’) There are constants cd ,Cd such
that

cd

√
logm

log logm
< pΓ < Cd logm

(de Laat & de la Salle 18’) Improved lower bound:
cd
√

logm < pΓ.

(Oppenheim 21’) Sharp lower bound: cd logm < pΓ.
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Two-sided spectral expanders (1)

Let (V ,E ) be a finite graph and E be a Banach space.

Define `2(V ;E) to be the space of functions φ : V → E
with norm

‖φ‖2 =
∑
v∈V

deg(v)‖φ‖2
E

Define AE,ME : `2(V ;E)→ `2(V ;E) by

AEφ(v) =
1

deg(v)

∑
u∼v

φ(u),

MEφ ≡
1∑

u deg(u)

∑
u

deg(u)φ(u).
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Two-sided spectral expanders (2)

For λ ∈ R, we say that (V ,E ) is a (E, λ)-two-sided spectral
expander if

‖AE(I −ME)‖B(`2(V ;E)) ≤ λ

Remarks:

1 For every E, every graph is a (E, 2)-two-sided spectral
expander.

2 For E = R (or any Hilbert space), the definition coincides
with the usual definition of what we’ll call a classical
λ-two-sided spectral expander: (V ,E ) is connected and
the non-trivial spectrum of the SRW is contained in
[−λ, λ].
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Riesz-Thorin Theorem and two-sided spectral

expansion

(Riesz-Thorin) For every p = 2
θ
, 0 < θ < 1, it holds for every

graph (V ,E ) that

‖A`p(I −M`p)‖B(`2(V ;`p)) ≤
‖A`2(I −M`2)‖θB(`2(V ;`2))‖A`∞(I −M`∞)‖1−θ

B(`2(V ;`∞)) ≤
2‖A`2(I −M`2)‖θB(`2(V ;`2))

i.e., if (V ,E ) is a classical λ-two-sided expander, it follows
that it is (` 2

θ
, 2λθ)-two-sided expander.
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Link in a simplicial complex

For a simplex v ∈ X (0), the link of v is a subcomplex

Xv = {η ∈ X : v /∈ η = ∅, {v} ∪ η ∈ X}.
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Theorem (Oppenheim 2020)

Let Γ f.g. group, X a simply connected 2-dim. complex, E a
reflexive Banach space. Assume that Γ y X geometrically. If
there is λ < 1

2
such that for every v ∈ X (0), the link of v is a

(E, λ)-two-sided spectral expander, then Γ has FE.

Remarks:

1 For Γ ∈ Γ(m, ρ), the presentation complex XΓ is a simply
connected 2-dim. simplicial complex on which Γ acts
geometrically.

2 For Hilbert spaces, this is weaker than the classical Zuk’s
criterion that requires only one-sided spectral gap.
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Bound on pΓ for Γ ∈ Γ(m, ρ)

Fix 1
3
< d < 1

2
and ρ = 1

(2m−1)3(1−d) , and let Γ ∈ Γ(m, ρ).

(de Laat & de la Salle) w.o.p there is a constant L such
that the link of a vertex in XΓ is a classical

L

m
3
2 d− 1

2
-two-sided expander.

Applying Riesz-Thorin, it follows that w.o.p for every
0 < θ < 1, the link of a vertex in XΓ is a
(` 2

θ
, 2 Lθ

m( 3
2 d− 1

2 )θ
)-two-sided expander.

Thus for every p <
log( 3

2
d− 1

2
)

log(4L)
log(m), w.o.p there is λ < 1

2

such that the link of a vertex in XΓ is a (`p, λ)-two-sided
expander.

Applying the variation of Zuk’s criterion above shows that
w.o.p pΓ > cd log(m).
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Proof - cohomological set up (1)

X 2-dim. simply connected, Γ y X geom., E a Banach space
and π : Γ→ O(E) a representation. To avoid complications -
also assume free action of Γ on X .
For 0 ≤ k ≤ 2, the space of k-cochains twisted by π denoted
by C k(X , π) is the space of all maps φ : ~X (k)→ E that are:

Anti-symmetric: for every permutation
σ ∈ Sym({0, ..., k}) and every (v0, ..., vk) ∈ ~X (k),

φ((vσ(0), ..., vσ(k))) = (−1)sgn(σ)φ((v0, ..., vk)).

Equivariant (w.r.t π): for every g ∈ G and every

(v0, ..., vk) ∈ ~X (k),

φ(g .(v0, ..., vk)) = π(g)φ((v0, ..., vk)).

Izhar Oppenheim Fixed point spectrum of random groups



The fixed point spectrum
Random groups

Zuk’s criterion for reflexive spaces

Proof - cohomological set up (2)

Define the differential dk : C k(X , π)→ C k+1(X , π) by

dkφ((v0, ..., vk+1)) =
k+1∑
i=0

(−1)iφ((v0, ..., v̂i , ..., vk+1))

Fact: FE⇔ H1(X , π) = ker(d1)
Im(d0)

= 0 for every π.
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Proof - Norm and coupling

Define the norm on C k(X , π) as

‖φ‖2 =
∑

τ∈Γ\~X (k)

m(τ)|φ(τ)|2E

where m(τ) = (2− k)!|{σ ∈ X (2) : τ ⊆ σ}|.
For the adjoint representation π : Γ→ O(E∗), define C k(X , π)
similarly and define dk : C k(X , π)→ C k+1(X , π). Define a
coupling between C k(X , π) and C k(X , π) by

〈φ, ψ〉 =
∑

τ∈Γ\~X (k)

m(τ)〈φ(τ), ψ(τ)〉
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Proof - Nowak’s Theorem

With the coupling above, take

d∗k : C k+1(X , π)→ C k(X , π),

dk
∗

: C k+1(X , π)→ C k(X , π).

Theorem (Nowak 12’)

Assume that E is reflexive and X , Γ as above. If there is a
constant C < 1 such that for every
φ ∈ C 1(X , π), ψ ∈ C 1(X , π) it holds that

|〈d1φ, d1ψ〉|+ |〈d0
∗
φ, d∗0ψ〉| ≥ |〈φ, ψ〉| − C

‖φ‖2 + ‖ψ‖2

2

Then H1(X , π) = 0.
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Proof - Garland’s method

Localization for φ ∈ C 1(X , π) (or ψ ∈ C 1(X , π))
φv (u) = φ((v , u))

2‖φ‖2 =
∑

v∈Γ\X (0)

‖φv‖2
v , 2‖ψ‖2 =

∑
v∈Γ\X (0)

‖ψv‖2
v

〈d0
∗
φ, d∗0ψ〉 =

∑
v∈Γ\X (0)

〈(Mv )Eφv , ψv〉v

〈d1φ, d1ψ〉 = 〈φ, ψ〉 −
∑

v∈Γ\X (0)

〈(Av )Eφv , ψv〉v .
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Proof - computations

〈d1φ, d1ψ〉+ 〈d0
∗
φ, d∗0ψ〉 =

〈φ, ψ〉 −
∑

v∈Γ\X (0)

〈(Av )Eφv , ψv〉v − 〈(Mv )Eφv , ψv〉v =Mv=AvMv

〈φ, ψ〉 −
∑

v∈Γ\X (0)

〈((Av )E(I − (Mv )E)φv , ψv〉v
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Proof - computations (2)

|〈d1φ, d1ψ〉|+ |〈d0
∗
φ, d∗0ψ〉| ≥

|〈φ, ψ〉| −
∑

v∈Γ\X (0)

|〈((Av )E(I − (Mv )E)φv , ψv〉v | ≥

|〈φ, ψ〉| −
∑

v∈Γ\X (0)

‖(Av )E(I − (Mv )E)‖‖φv‖‖ψv‖ ≥

|〈φ, ψ〉| −
∑

v∈Γ\X (0)

λ
‖φv‖2 + ‖ψv‖2

2
=

|〈φ, ψ〉| − 2λ
‖φ‖2 + ‖ψ‖2

2

and we a done by Nowak’s Theorem
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Final remarks

The same method applies for higher cohomology and
other Banach spaces (commutative and non-commutative
Lp spaces, uniformly curved spaces).

The case where the links are bipartite is not treated in my
method (was treated by Drutu and Mackay).
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Thank you for listening
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