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Property (T)

G - group generated by a finite set S

Definition (Kazhdan 1966)

G has property (T) if there is κ = κ(G,S) > 0 such that

sup
s∈S
‖v − πsv‖ ≥ κ‖v‖

for every unitary representation without invariant vectors.

Kazhdan constant = optimal κ(G,S)
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Property (T)

Finite groups have (T)

Classical examples of infinite groups with (T):

• higher rank simple Lie groups and their lattices
SLn(R), SLn(Z), n ≥ 3 (Kazhdan, 1966)

• automorphism groups of certain buildings, e.g. Ã2

(Cartwright-Młotkowski-Steger 1996, Pansu, Żuk,
Ballmann-Świa̧tkowski, 1997-98)

• certain random hyperbolic groups in the triangular and
Gromov model (Żuk 2003)
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Why is property (T) interesting?

Some applications:

• Margulis (1977): G with (T), Ni ⊆ G family of finite index
subgroups with trivial intersection =⇒ Cayley graphs of G/Ni

form expander graphs

• Fisher-Margulis (2003): G has (T), acts smoothly on a
smooth manifold via an action ρ. Then any smooth action ρ′

sufficiently close to ρ on the generators is conjugate to ρ.

• counterexamples to Baum-Connes type conjectures
(Higson-Lafforgue-Skandalis 2003): K -theory classes
represented by Kazhdan-type projections do not lie in the
image of appropriate Baum-Connes assembly map
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Question

Does Aut(Fn) or Out(Fn) have property (T)?

Earlier methods of proving (T) useless

For small values of n the answer is negative:

• Aut(F2) maps onto Out(F2) ' GL2(Z)

• Aut(F3) maps onto Z (McCool 1989)
and virtually onto F2 (Grunewald-Lubotzky 2006)

=⇒ no (T)
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Ozawa’s characterization

Laplacian in the real group ring RG:

∆ = |S | −
∑
s∈S

s ∈ RG

Theorem (Ozawa, 2014)

(G,S) has property (T) iff for some λ > 0 and a finite collection
of ξi ∈ RG

∆2 − λ∆ =
n∑

i=1

ξ∗i ξi

This is a finite-dim condition - perhaps possible to solve with
computer assistance.
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Property (T) quantified

If the equation is satisfied:

∆2 − λ∆ =
n∑

i=1

ξ∗i ξi

then relation to Kazhdan constants:

√
2λ
|S |
≤ κ(G,S)

we can also define the following notion

Definition

Kazhdan radius of (G,S) = smallest r > 0 such that
supp ξi ⊆ B(e, r) for all ξi above.
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Implementation for SLn(Z)

Implementation of this strategy pioneered by Netzer-Thom (2015):

a new, computer-assisted proof of (T) for SL3(Z)

(generators: elementary matrices)

Improvement of Kazhdan constant:

' 1/1800 → ' 1/6

Later also improved Kazhdan constants for SLn(Z) for

n = 3, 4 (Fujiwara-Kabaya)

n = 3, 4, 5 (Kaluba-N.)
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Setup: SAut(Fn)

Subgroup of Aut(Fn), generated by Nielsen transformations:

R±ij (sk ) =

 sk s±1
j if k = i

sk oth.
, L±ij (sk ) =

 s±1
j sk if k = i

sk oth.

Equivalently,
SAut(Fn) = ab−1(SLn(Z))

under the map Aut(Fn)→ GLn(Z) induced by the abelianization
Fn → Z

n.

SAut(Fn) has index 2 in Aut(Fn)

9



Main results

Theorem (Kaluba - N. - Ozawa)

SAut(F5) has property (T) with Kazhdan constant

0.18 ≤ κ(SAut(F5))

Theorem (Kaluba - Kielak - N.)

SAut(Fn) has property (T) for n ≥ 6 with Kazhdan radius 2 and
Kazhdan constant√

0.138(n − 2)

6(n2 − n)
≤ κ(SAut(Fn)).

10



Certifying positivity via
semidefinite programming



η ∈ RG positive if η is a sum of squares:

η =
k∑

i=1

ξ∗i ξi

where supp ξi ⊆ E - finite subset of G. (here always E = B(e, 2))

⇐⇒

there is a positive definite E ×E matrix P such that for b = [g1, . . . , gn]gi∈E

η = bPbT = bQQT bT = (bQ)(bQ)T

i-th column of Q = coefficients of ξi
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Using the solver

To check if η is positve we can use a semidefinite solver to perform
convex optimization over positive definite matrices:

find P ∈ ME×E such that:

η = bPbT

positive semi-definite
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Assume now that a computer has found a solution P - we obtain

η '
∑

ξ∗i ξi

this is not a precise solution

However this can be improved if the error is small in a certain
sense and η belongs to the augmentation ideal IG

Lemma (Ozawa, Netzer-Thom)
∆ is an order unit in IG: if η = η∗ ∈ IG then

η + R∆ =
∑

ξ∗i ξi

for all sufficiently large R ≥ 0.

Moreover, R = 22r−2‖η‖1 is sufficient, where supp η ⊆ B(e, 2r).
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With this in mind we can try to improve our search of P to show
that η is “strictly positive”:

maximize λ ≥ 0 under the conditions

η − λ∆ = bPbT

P ∈ ME×E positive semi-definite
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Assume now that numerically on B(e, 2r)

η − λ∆ ' bPbT

and P = QQT .

Correct Q to Q , where columns of Q sum up to 0.∥∥∥∥∥η − λ∆ − bQ Q
T

bT
∥∥∥∥∥

1
≤ ε

Then for R = ε22r−2 or larger:

η − λ∆+R∆︸     ︷︷     ︸
(λ−R)∆

= bQ Q
T

bT︸      ︷︷      ︸∑
η∗i ηi

+ (η − λ∆ − bQ Q
T

bT +R∆)︸                               ︷︷                               ︸
≥0 by lemma

If λ − R > 0 then η − (λ − R)∆ ≥ 0 and in particular, ξ ≥ 0.
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Important:
The `1-norm is computed in interval artihmetic.

This gives a mathematically rigorous proof of positivity of η.
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To prove (T): apply to η = ∆2 − λ∆ and maximize for λ > 0

We want to use this strategy in SAut(F5).

Problem #1:
|B(e, 2)| = 4 641

P has 10 771 761 variables - too large for a solver to handle

We reduce the number of variables via symmetrization
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

? •

? • ◦

◦ ? ◦

• • ◦

◦ ? •

? ?


−→



[
∗

]  ∗ ∗
∗ ∗


. . . [

∗
]



The reduction for SAut(F5):

from 10 771 761 variables→ 13 232 variables in 36 blocks
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Theorem (Kaluba-N.-Ozawa)

SAut(F5) has (T) with Kazhdan constant ≥ 0.18027.

Proof.

Find sum of squares decomposition for ∆2 − λ∆

on the ball of radius 2
Data from solver: P and λ = 1.3

8.30 · 10−6 ≤

∥∥∥∥∆2 − λ∆ −
∑

ξ∗i ξi

∥∥∥∥
1
≤ 8.41 · 10−6

=⇒ R = 8.41 · 10−6 · 24−2 suffices

λ − R = 1.2999 > 0
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Property (T) for Aut(Fn), n ≥ 6



Gn with generating set Sn will denote either one of the families

• SAut(Fn) generatred by Nielsen transformations R±i,j , L±i,j

• SLn(Z) generated by elementary matrices E±i,j
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Gn form a tower via the standard inclusions

Fn ⊆ Fn+1 and Zn ⊆ Zn+1

Cn = (n − 1)-simplex on {1, . . . , n}

En set of edges of Cn = (unoriented) pairs e = {i, j}

Altn acts on edges: σ(e) = σ({i, j}) = {σ(i), σ(j)}

Map
ln : Sn → En,

R±ij , L
±
ij 7→ {i, j}, E±ij 7→ {i, j}
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∆n ∈ RGn - Laplacian of Gn

A copy of G2 is attached at each edge.

For an edge e = {i, j} let Se = {s ∈ Sn : ln(s) = e} and

∆e = |Se | −
∑
t∈Se

t

is the Laplacian of the copy of G2 attached to e

We have σ(∆e) = ∆σ(e) for any σ ∈ Altn
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Given 2 edges they can

1. coincide

2. be adjacent (share a vertex)

3. be opposite (share no vertices) - corresponding copies of G2

commute
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1 2

3

4

Altn permutes vertices

e = {2, 3}

SAut(F2) or SL2(Z)

∆e

f = {1, 4}

SAut(F2) or SL2(Z)

∆f
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∆e are building blocks of the Laplacians in Gn:

Lemma

∆n =
∑
e∈En

∆e

=
1

(n − 2)!

∑
σ∈Altn

σ(∆e).

Proposition
For m ≥ n ≥ 3 we have∑

σ∈Altm

σ(∆n) =

(
n
2

)
(m − 2)!∆m.

Main step in proving property (T) for Gn:
a “stable decomposition” of ∆2

n − λ∆n
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∆2 =

∑
e

∆e


∑

f

∆f

 =
∑
e,f

∆e∆f

Define three elements of RGn:

1. Sqn =
∑

e∈En ∆2
e

2. Adjn =
∑

e∈En

∑
f∈Adjn(e) ∆e∆f

3. Opn =
∑

e∈En

∑
f∈Opn(e) ∆e∆f

Then
Sqn + Adjn + Opn = ∆2

n
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Lemma
The elements Sqn and Opn are sums of squares.

Proof.
Obvious for Sqn.

For Opn:

∆e =
1
2

∑
t∈Se

(1 − t)∗(1 − t)

e, f opposite edges then the generators associated to them
commute and ∆e∆f can be rewritten as a sum of squares using

(1 − t)∗(1 − t)(1 − s)∗(1 − s) =
(
(1 − t)(1 − s)

)∗(
(1 − t)(1 − s)

)
�
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Stability for Adj and Op:

Proposition
For m ≥ n ≥ 3 we have∑

σ∈Altm

σ (Adjn) =

(
1
2

n(n − 1)(n − 2)(m − 3)!

)
Adjm

Proposition
For m ≥ n ≥ 4 we have∑

σ∈Altm

σ (Opn) =

(
2
(
n
2

) (
n − 2

n

)
(m − 4)!

)
Opm
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The following allows to prove (T) for SLn(Z) for n ≥ 3 and for
SAut(Fn), n ≥ 7.

Theorem
Let n ≥ 3 and

Adjn +k Opn −λ∆n =
∑

ξ∗i ξi

where supp ξi ⊂ B(e,R), for some k ≥ 0, λ ≥ 0.

Then Gm has property (T) for every m ≥ n such that

k(n − 3) ≤ m − 3.

Moreover, the Kazhdan radius is bounded above by R.
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Proof: Rewrite ∆2
m − λ∆m using stability of Op, Adj and ∆.

∆2
m −

λ(m − 2)

n − 2
∆m = Sqm + Adjm + Opm −

λ(m − 2)

n − 2
∆m

= Sqm +

(
1 −

k(n − 3)

m − 3

)
Opm +

2
n(n − 1)(n − 2)(m − 3)!

∑
σ∈Altm

σ (Adjn +k Opn −λ∆n)

When 1 −
k(n − 3)

m − 3
≥ 0 we obtain the claim. �
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Results



Theorem

SAut(Fn) has (T) for n ≥ 6, with Kazhdan radius 2 and Kazhdan
constant estimate √

0.138(n − 2)

6(n2 − n)
≤ κ(SAutn).

Proof.
The case n ≥ 7:

Adj5 +2 Op5 −0.138∆5

certified positive on the ball of radius 2. �

The case n = 6 needs a different computation.
The case n = 5 so far can only be proven directly.

Currently also Adj4 +100 Op4 −0.1∆ ≥ 0 in SAut(F4) proving (T)

for n ≥ 103.
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Theorem

SLn(Z) has (T) for n ≥ 3, with Kazhdan radius 2 and Kazhdan
constant estimate√

0.157999(n − 2)

n2 − n
≤ κ(SLn(Z)).

Proof.

Adj3 −0.157999∆3

certified positive on the ball of radius 2. �

This gives a new estimate on the Kazhdan constants of SLn(Z).
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We obtain an even better estimate by certifying positivity of

Adj5 +1.5 Op5 −1.5∆5

in R SL5(Z):

√
0.5(n − 2)

n2 − n
≤ κ(SLn(Z)) for n ≥ 6.

Previously known bounds:

(Kassabov 2005)
1

42
√

n + 860
≤ κ(SLn(Z)) ≤

√
2
n

(Żuk 1999)

Asymptotically, the new lower bound is 1/2 of the upper bound:

Żuk’s upper bound
our lower bound

= 2

√
n − 1
n − 2

−→ 2 (n ≥ 6)
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Some applications

Product Replacement Algorithm generates random elements in
finite groups

Lubotzky and Pak in 2001 showed that property (T) for Aut(Fn)

would explain the fast performance of the Product Replacement
Algorithm

Now proven.
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Some applications

Question (Lubotzky 1994)
Is there a sequence of finite groups such that their Cayley graphs
are expanders or not for different generating sets (uniformly
bounded)?

Kassabov 2003: yes for a subsequence of symmetric groups

Gilman 1977: Aut(Fn) for n ≥ 3 residually alternating

=⇒ sequences of alternating groups with Aut(Fn) generators are
expanders

This gives an alternative answer to Lubotzky’s questions with
explicit generating sets
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Final remarks

• property (T) for Aut(F4) confirmed by Martin Nietsche

• jointly with Uri Bader we proved a generalization of Ozawa’s
characterization over RG of property (T) to higher
cohomology with unitary coefficients
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