On property (T) for $\operatorname{Aut}\left(F_{n}\right)$

Piotr Nowak

Institute of Mathematics
Polish Academy of Sciences
Warsaw

Property (T)

G - group generated by a finite set S

Definition (Kazhdan 1966)

G has property (T) if there is $\kappa=\kappa(G, S)>0$ such that

$$
\sup _{s \in S}\left\|v-\pi_{s} v\right\| \geq \kappa\|v\|
$$

for every unitary representation without invariant vectors.

Kazhdan constant $=$ optimal $\kappa(G, S)$

Property (T)

Finite groups have (T)
Classical examples of infinite groups with (T) :

- higher rank simple Lie groups and their lattices $S L_{n}(\mathbb{R}), S L_{n}(\mathbb{Z}), n \geq 3$ (Kazhdan, 1966)
- automorphism groups of certain buildings, e.g. \widetilde{A}_{2} (Cartwright-Młotkowski-Steger 1996, Pansu, Żuk, Ballmann-Świa̧tkowski, 1997-98)
- certain random hyperbolic groups in the triangular and Gromov model (Żuk 2003)

Why is property (T) interesting?

Some applications:

- Margulis (1977): G with $(T), N_{i} \subseteq G$ family of finite index subgroups with trivial intersection \Longrightarrow Cayley graphs of G / N_{i} form expander graphs

Why is property (T) interesting?

Some applications:

- Margulis (1977): G with $(T), N_{i} \subseteq G$ family of finite index subgroups with trivial intersection \Longrightarrow Cayley graphs of G / N_{i} form expander graphs
- Fisher-Margulis (2003): G has (T), acts smoothly on a smooth manifold via an action ρ. Then any smooth action ρ^{\prime} sufficiently close to ρ on the generators is conjugate to ρ.

Why is property (T) interesting?

Some applications:

- Margulis (1977): G with $(T), N_{i} \subseteq G$ family of finite index subgroups with trivial intersection \Longrightarrow Cayley graphs of G / N_{i} form expander graphs
- Fisher-Margulis (2003): G has (T), acts smoothly on a smooth manifold via an action ρ. Then any smooth action ρ^{\prime} sufficiently close to ρ on the generators is conjugate to ρ.
- counterexamples to Baum-Connes type conjectures (Higson-Lafforgue-Skandalis 2003): K-theory classes represented by Kazhdan-type projections do not lie in the image of appropriate Baum-Connes assembly map

Question

Does $\operatorname{Aut}\left(F_{n}\right)$ or Out $\left(F_{n}\right)$ have property (T) ?

Earlier methods of proving (T) useless

Question

Does $\operatorname{Aut}\left(F_{n}\right)$ or Out $\left(F_{n}\right)$ have property (T) ?

Earlier methods of proving (T) useless

For small values of n the answer is negative:

- $\operatorname{Aut}\left(F_{2}\right)$ maps onto $\operatorname{Out}\left(F_{2}\right) \simeq G L_{2}(\mathbb{Z})$
- Aut $\left(F_{3}\right)$ maps onto \mathbb{Z} (McCool 1989) and virtually onto F_{2} (Grunewald-Lubotzky 2006)
\Longrightarrow no (T)

Ozawa's characterization

Laplacian in the real group ring $\mathbb{R} G$:

$$
\Delta=|S|-\sum_{s \in S} s \quad \in \mathbb{R} G
$$

Theorem (Ozawa, 2014)
(G, S) has property (T) iff for some $\lambda>0$ and a finite collection of $\xi_{i} \in \mathbb{R} G$

$$
\Delta^{2}-\lambda \Delta=\sum_{i=1}^{n} \xi_{i}^{*} \xi_{i}
$$

This is a finite-dim condition - perhaps possible to solve with computer assistance.

Property (T) quantified

If the equation is satisfied:

$$
\Delta^{2}-\lambda \Delta=\sum_{i=1}^{n} \xi_{i}^{*} \xi_{i}
$$

then relation to Kazhdan constants:

$$
\sqrt{\frac{2 \lambda}{|S|}} \leq \kappa(G, S)
$$

we can also define the following notion

Definition

Kazhdan radius of $(G, S)=$ smallest $r>0$ such that $\operatorname{supp} \xi_{i} \subseteq B(e, r)$ for all ξ_{i} above.

Implementation for $\mathrm{SL}_{n}(\mathbb{Z})$

Implementation of this strategy pioneered by Netzer-Thom (2015):
a new, computer-assisted proof of (T) for $\mathrm{SL}_{3}(\mathbb{Z})$ (generators: elementary matrices)

Improvement of Kazhdan constant:

$$
\simeq 1 / 1800 \quad \rightarrow \quad \simeq 1 / 6
$$

Later also improved Kazhdan constants for $\mathrm{SL}_{n}(\mathbb{Z})$ for
$n=3,4$ (Fujiwara-Kabaya)
$n=3,4,5$ (Kaluba-N.)

Setup: $\operatorname{SAut}\left(F_{n}\right)$

Subgroup of $\operatorname{Aut}\left(F_{n}\right)$, generated by Nielsen transformations:

$$
R_{i j}^{ \pm}\left(s_{k}\right)=\left\{\begin{array}{ll}
s_{k} s_{j}^{ \pm 1} & \text { if } k=i \\
s_{k} & \text { oth. }
\end{array}, \quad L_{i j}^{ \pm}\left(s_{k}\right)= \begin{cases}s_{j}^{ \pm 1} s_{k} & \text { if } k=i \\
s_{k} & \text { oth. }\end{cases}\right.
$$

Equivalently,

$$
\operatorname{SAut}\left(F_{n}\right)=a b^{-1}\left(\operatorname{SL}_{n}(\mathbb{Z})\right)
$$

under the map $\operatorname{Aut}\left(F_{n}\right) \rightarrow G L_{n}(\mathbb{Z})$ induced by the abelianization $F_{n} \rightarrow \mathbb{Z}^{n}$.
$\operatorname{SAut}\left(F_{n}\right)$ has index $2 \operatorname{in} \operatorname{Aut}\left(F_{n}\right)$

Main results

Theorem (Kaluba - N. - Ozawa)

SAut $\left(F_{5}\right)$ has property (T) with Kazhdan constant

$$
0.18 \leq \kappa\left(\operatorname{SAut}\left(F_{5}\right)\right)
$$

Theorem (Kaluba - Kielak - N.)

SAut $\left(F_{n}\right)$ has property (T) for $n \geq 6$ with Kazhdan radius 2 and Kazhdan constant

$$
\sqrt{\frac{0.138(n-2)}{6\left(n^{2}-n\right)}} \leq \kappa\left(\operatorname{SAut}\left(F_{n}\right)\right)
$$

Certifying positivity via semidefinite programming
$\eta \in \mathbb{R} G$ positive if η is a sum of squares:

$$
\eta=\sum_{i=1}^{k} \xi_{i}^{*} \xi_{i}
$$

where $\operatorname{supp} \xi_{i} \subseteq E$ - finite subset of G. (here always $E=B(e, 2)$)
there is a positive definite $E \times E$ matrix P such that for $\mathbf{b}=\left[g_{1}, \ldots, g_{n}\right]_{g_{i} \in E}$

$$
\eta=\mathbf{b} P \mathbf{b}^{T}=\mathbf{b} Q Q^{T} \mathbf{b}^{T}=(\mathbf{b} Q)(\mathbf{b} Q)^{T}
$$

i-th column of $Q=$ coefficients of ξ_{i}

Using the solver

To check if η is positve we can use a semidefinite solver to perform convex optimization over positive definite matrices:

$$
\begin{array}{ll}
\text { find } P \in \mathbb{M}_{E \times E} & \text { such that: } \\
& \eta=\mathbf{b} P \mathbf{b}^{T}
\end{array}
$$

positive semi-definite

Assume now that a computer has found a solution P - we obtain

$$
\eta \simeq \sum \xi_{i}^{*} \xi_{i}
$$

this is not a precise solution

Assume now that a computer has found a solution P - we obtain

$$
\eta \simeq \sum \xi_{i}^{*} \xi_{i}
$$

this is not a precise solution

However this can be improved if the error is small in a certain sense and η belongs to the augmentation ideal $I G$

Lemma (Ozawa, Netzer-Thom)

Δ is an order unit in IG: if $\eta=\eta^{*} \in I G$ then

$$
\eta+R \Delta=\sum \xi_{i}^{*} \xi_{i}
$$

for all sufficiently large $R \geq 0$.
Moreover, $R=2^{2 r-2}\|\eta\|_{1}$ is sufficient, where supp $\eta \subseteq B\left(e, 2^{r}\right)$.

With this in mind we can try to improve our search of P to show that η is "strictly positive":
maximize $\lambda \geq 0$ under the conditions

$$
\begin{aligned}
& \eta-\lambda \triangle=\mathbf{b P b}^{T} \\
& P \in \mathbb{M}_{E \times E} \text { positive semi-definite }
\end{aligned}
$$

Assume now that numerically on $B\left(e, 2^{r}\right)$

$$
\eta-\lambda \Delta \simeq \mathbf{b} P \mathbf{b}^{T}
$$

and $P=Q Q^{\top}$.

Assume now that numerically on $B\left(e, 2^{r}\right)$

$$
\eta-\lambda \Delta \simeq \mathbf{b} P \mathbf{b}^{T}
$$

and $P=Q Q^{T}$.

Correct Q to \bar{Q}, where columns of Q sum up to 0 .

$$
\left\|\eta-\lambda \Delta-\mathbf{b} \bar{Q} \bar{Q}^{T} \mathbf{b}^{T}\right\|_{1} \leq \varepsilon
$$

Assume now that numerically on $B\left(e, 2^{r}\right)$

$$
\eta-\lambda \Delta \simeq \mathbf{b} P \mathbf{b}^{T}
$$

and $P=Q Q^{\top}$.

Correct Q to \bar{Q}, where columns of Q sum up to 0 .

$$
\left\|\eta-\lambda \Delta-\mathbf{b} \bar{Q} \bar{Q}^{\top} \mathbf{b}^{T}\right\|_{1} \leq \varepsilon
$$

Then for $R=\varepsilon 2^{2 r-2}$ or larger:

$$
\eta-\underbrace{\lambda \Delta+R \Delta}_{(\lambda-R) \Delta}=\underbrace{\mathbf{b} \bar{Q} \bar{Q}^{\top} \mathbf{b}^{T}}_{\sum \eta_{i}^{*} \eta_{i}}+\underbrace{\left(\eta-\lambda \Delta-\mathbf{b} \bar{Q} \bar{Q}^{\top} \mathbf{b}^{T}+R \Delta\right)}_{\geq 0 \text { by lemma }}
$$

If $\lambda-R>0$ then $\eta-(\lambda-R) \Delta \geq 0$ and in particular, $\xi \geq 0$.

Important:
The ℓ_{1}-norm is computed in interval artihmetic.

This gives a mathematically rigorous proof of positivity of η.

To prove (T): apply to $\eta=\Delta^{2}-\lambda \Delta$ and maximize for $\lambda>0$

We want to use this strategy in $\operatorname{SAut}\left(F_{5}\right)$.

Problem \#1:

$$
|B(e, 2)|=4641
$$

P has 10771761 variables - too large for a solver to handle

To prove (T): apply to $\eta=\Delta^{2}-\lambda \Delta$ and maximize for $\lambda>0$

We want to use this strategy in $\operatorname{SAut}\left(F_{5}\right)$.

Problem \#1:

$$
|B(e, 2)|=4641
$$

P has 10771761 variables - too large for a solver to handle

We reduce the number of variables via symmetrization

The reduction for $\operatorname{SAut}\left(F_{5}\right)$:
from 10771761 variables $\rightarrow 13232$ variables in 36 blocks

Theorem (Kaluba-N.-Ozawa)

SAut $\left(\mathrm{F}_{5}\right)$ has (T) with Kazhdan constant ≥ 0.18027.

Proof.

Find sum of squares decomposition for $\Delta^{2}-\lambda \Delta$ on the ball of radius 2
Data from solver: P and $\lambda=1.3$

$$
\begin{gathered}
8.30 \cdot 10^{-6} \leq\left\|\Delta^{2}-\lambda \Delta-\sum \xi_{i}^{*} \xi_{i}\right\|_{1} \leq 8.41 \cdot 10^{-6} \\
\Longrightarrow R=8.41 \cdot 10^{-6} \cdot 2^{4-2} \text { suffices } \\
\lambda-R=1.2999>0
\end{gathered}
$$

$\operatorname{Property}(T)$ for $\operatorname{Aut}\left(F_{n}\right), n \geq 6$
G_{n} with generating set S_{n} will denote either one of the families

- $\operatorname{SAut}\left(F_{n}\right)$ generatred by Nielsen transformations $R_{i, j}^{ \pm}, L_{i, j}^{ \pm}$
- $S L_{n}(\mathbb{Z})$ generated by elementary matrices $E_{i, j}^{ \pm}$
G_{n} form a tower via the standard inclusions

$$
F_{n} \subseteq F_{n+1} \quad \text { and } \quad \mathbb{Z}_{n} \subseteq \mathbb{Z}_{n+1}
$$

G_{n} form a tower via the standard inclusions

$$
F_{n} \subseteq F_{n+1} \quad \text { and } \quad \mathbb{Z}_{n} \subseteq \mathbb{Z}_{n+1}
$$

$\mathscr{C}_{n}=(n-1)$-simplex on $\{1, \ldots, n\}$
E_{n} set of edges of $\mathscr{C}_{n}=($ unoriented $)$ pairs $e=\{i, j\}$
Alt ${ }_{n}$ acts on edges: $\sigma(e)=\sigma(\{i, j\})=\{\sigma(i), \sigma(j)\}$

Map

$$
\begin{gathered}
I_{n}: S_{n} \rightarrow E_{n}, \\
R_{i j}^{ \pm}, L_{i j}^{ \pm} \mapsto\{i, j\}, \quad E_{i j}^{ \pm} \mapsto\{i, j\}
\end{gathered}
$$

$\Delta_{n} \in \mathbb{R} G_{n}$ - Laplacian of G_{n}
A copy of G_{2} is attached at each edge.

For an edge $e=\{i, j\}$ let $S_{e}=\left\{s \in S_{n}: I_{n}(s)=e\right\}$ and

$$
\Delta_{e}=\left|S_{e}\right|-\sum_{t \in S_{e}} t
$$

is the Laplacian of the copy of G_{2} attached to e

We have $\sigma\left(\Delta_{e}\right)=\Delta_{\sigma(e)}$ for any $\sigma \in$ Alt $_{n}$

Given 2 edges they can

1. coincide
2. be adjacent (share a vertex)
3. be opposite (share no vertices) - corresponding copies of G_{2} commute

Alt ${ }_{n}$ permutes vertices

2

Alt ${ }_{n}$ permutes vertices

Alt ${ }_{n}$ permutes vertices

Alt ${ }_{n}$ permutes vertices

Alt ${ }_{n}$ permutes vertices 3

Δ_{e} are building blocks of the Laplacians in G_{n} :

Lemma

$$
\Delta_{n}=\sum_{e \in E_{n}} \Delta_{e}
$$

Δ_{e} are building blocks of the Laplacians in G_{n} :

Lemma

$$
\Delta_{n}=\sum_{e \in E_{n}} \Delta_{e}=\frac{1}{(n-2)!} \sum_{\sigma \in \mathrm{Alt}_{n}} \sigma\left(\Delta_{e}\right)
$$

Δ_{e} are building blocks of the Laplacians in G_{n} :

Lemma

$$
\Delta_{n}=\sum_{e \in E_{n}} \Delta_{e}=\frac{1}{(n-2)!} \sum_{\sigma \in \mathrm{Alt}_{n}} \sigma\left(\Delta_{e}\right)
$$

Proposition

For $m \geq n \geq 3$ we have

$$
\sum_{\sigma \in \mathrm{Alt}_{m}} \sigma\left(\Delta_{n}\right)=\binom{n}{2}(m-2)!\Delta_{m}
$$

Main step in proving property (T) for G_{n} :
a "stable decomposition" of $\Delta_{n}^{2}-\lambda \Delta_{n}$

$$
\Delta^{2}=\left(\sum_{0} \Delta_{0}\right)\left(\sum_{t} \Delta_{t}\right)=\sum_{\theta=1} \Delta_{\Delta} \Delta_{t}
$$

$$
\Delta^{2}=\left(\sum_{e} \Delta_{e}\right)\left(\sum_{f} \Delta_{f}\right)=\sum_{e, f} \Delta_{e} \Delta_{f}
$$

Define three elements of $\mathbb{R} G_{n}$:

1. $\mathrm{Sq}_{n}=\sum_{e \in E_{n}} \Delta_{e}^{2}$
2. $\operatorname{Adj}_{n}=\sum_{e \in E_{n}} \sum_{f \in \operatorname{Adj}_{n}(e)} \Delta_{e} \Delta_{f}$
3. $\mathrm{Op}_{n}=\sum_{e \in E_{n}} \sum_{f \in \mathrm{Op}_{n}(e)} \Delta_{e} \Delta_{f}$

Then

$$
\mathrm{Sq}_{n}+\mathrm{Adj}_{n}+\mathrm{Op}_{n}=\Delta_{n}^{2}
$$

Lemma

The elements Sq_{n} and Op_{n} are sums of squares.

Proof.

Obvious for Sq_{n}.

Lemma

The elements Sq_{n} and Op_{n} are sums of squares.

Proof.

Obvious for Sq_{n}.

For $O p_{n}$:

$$
\Delta_{e}=\frac{1}{2} \sum_{t \in S_{e}}(1-t)^{*}(1-t)
$$

e, f opposite edges then the generators associated to them commute and $\Delta_{e} \Delta_{f}$ can be rewritten as a sum of squares using

$$
(1-t)^{*}(1-t)(1-s)^{*}(1-s)=((1-t)(1-s))^{*}((1-t)(1-s))
$$

Stability for Adj and Op:

Proposition

For $m \geq n \geq 3$ we have

$$
\sum_{\sigma \in \mathrm{Alt}_{m}} \sigma\left(\mathrm{Adj}_{n}\right)=\left(\frac{1}{2} n(n-1)(n-2)(m-3)!\right) \operatorname{Adj}_{m}
$$

Stability for Adj and Op:

Proposition

For $m \geq n \geq 3$ we have

$$
\sum_{\sigma \in \mathrm{Alt}_{m}} \sigma\left(\mathrm{Adj}_{n}\right)=\left(\frac{1}{2} n(n-1)(n-2)(m-3)!\right) \operatorname{Adj}_{m}
$$

Proposition

For $m \geq n \geq 4$ we have

$$
\sum_{\sigma \in \mathrm{Alt}_{m}} \sigma\left(O p_{n}\right)=\left(2\binom{n}{2}\binom{n-2}{n}(m-4)!\right) O p_{m}
$$

The following allows to prove (T) for $\operatorname{SL}_{n}(Z)$ for $n \geq 3$ and for $\operatorname{SAut}\left(F_{n}\right), n \geq 7$.

Theorem

Let $n \geq 3$ and

$$
\mathrm{Adj}_{n}+k \mathrm{Op}_{n}-\lambda \Delta_{n}=\sum \xi_{i}^{*} \xi_{i}
$$

where supp $\xi_{i} \subset B(e, R)$, for some $k \geq 0, \lambda \geq 0$.
Then G_{m} has property (T) for every $m \geq n$ such that

$$
k(n-3) \leq m-3
$$

Moreover, the Kazhdan radius is bounded above by R.

Proof: Rewrite $\Delta_{m}^{2}-\lambda \Delta_{m}$ using stability of $\mathrm{Op}, \operatorname{Adj}$ and Δ.

$$
\Delta_{m}^{2}-\frac{\lambda(m-2)}{n-2} \Delta_{m}=\mathrm{Sq}_{m}+\mathrm{Adj}_{m}+\mathrm{Op}_{m}-\frac{\lambda(m-2)}{n-2} \Delta_{m}
$$

$$
\begin{aligned}
& =\mathrm{Sq}_{m}+\left(1-\frac{k(n-3)}{m-3}\right) \mathrm{Op}_{m}+ \\
& \frac{2}{n(n-1)(n-2)(m-3)!} \sum_{\sigma \in \mathrm{Alt}_{m}} \sigma\left(\mathrm{Adj}_{n}+k \mathrm{Op}_{n}-\lambda \Delta_{n}\right)
\end{aligned}
$$

When $1-\frac{k(n-3)}{m-3} \geq 0$ we obtain the claim.

Results

Theorem

SAut $\left(F_{n}\right)$ has (T) for $n \geq 6$, with Kazhdan radius 2 and Kazhdan constant estimate

$$
\sqrt{\frac{0.138(n-2)}{6\left(n^{2}-n\right)}} \leq \kappa\left(\mathrm{SAut}_{n}\right)
$$

Theorem

SAut $\left(F_{n}\right)$ has (T) for $n \geq 6$, with Kazhdan radius 2 and Kazhdan constant estimate

$$
\sqrt{\frac{0.138(n-2)}{6\left(n^{2}-n\right)}} \leq \kappa\left(\mathrm{SAut}_{n}\right)
$$

Proof.

The case $n \geq 7$:

$$
\mathrm{Adj}_{5}+2 \mathrm{Op}_{5}-0.138 \Delta_{5}
$$

certified positive on the ball of radius 2 .
The case $n=6$ needs a different computation.
The case $n=5$ so far can only be proven directly.
Currently also $\mathrm{Adj}_{4}+100 \mathrm{Op}_{4}-0.1 \Delta \geq 0$ in $\operatorname{SAut}\left(F_{4}\right)$ proving (T) for $n \geq 103$.

Theorem

$\mathrm{SL}_{n}(\mathbb{Z})$ has (T) for $n \geq 3$, with Kazhdan radius 2 and Kazhdan constant estimate

$$
\sqrt{\frac{0.157999(n-2)}{n^{2}-n}} \leq \kappa\left(\operatorname{SL}_{n}(\mathbb{Z})\right)
$$

Proof.

$$
\operatorname{Adj}_{3}-0.157999 \Delta_{3}
$$

certified positive on the ball of radius 2 .
This gives a new estimate on the Kazhdan constants of $\mathrm{SL}_{n}(\mathbb{Z})$.

We obtain an even better estimate by certifying positivity of

$$
\mathrm{Adj}_{5}+1.5 \mathrm{Op}_{5}-1.5 \Delta_{5}
$$

in $\mathbb{R} \mathrm{SL}_{5}(\mathbb{Z})$:

$$
\sqrt{\frac{0.5(n-2)}{n^{2}-n}} \leq \kappa\left(\operatorname{SL}_{n}(\mathbb{Z})\right) \quad \text { for } n \geq 6
$$

We obtain an even better estimate by certifying positivity of

$$
\mathrm{Adj}_{5}+1.5 \mathrm{Op}_{5}-1.5 \Delta_{5}
$$

in $\mathbb{R} \mathrm{SL}_{5}(\mathbb{Z})$:

$$
\sqrt{\frac{0.5(n-2)}{n^{2}-n}} \leq \kappa\left(\operatorname{SL}_{n}(\mathbb{Z})\right) \quad \text { for } n \geq 6
$$

Previously known bounds:
(Kassabov 2005)

$$
\begin{equation*}
\frac{1}{42 \sqrt{n}+860} \leq \kappa\left(\mathrm{SL}_{n}(\mathbb{Z})\right) \leq \sqrt{\frac{2}{n}} \tag{Żuk1999}
\end{equation*}
$$

Asymptotically, the new lower bound is $1 / 2$ of the upper bound:

$$
\frac{\text { Żuk's upper bound }}{\text { our lower bound }}=2 \sqrt{\frac{n-1}{n-2}} \rightarrow 2 \quad(n \geq 6)
$$

Some applications

Product Replacement Algorithm generates random elements in finite groups

Lubotzky and Pak in 2001 showed that property (T) for $\operatorname{Aut}\left(F_{n}\right)$ would explain the fast performance of the Product Replacement Algorithm

Now proven.

Some applications

Question (Lubotzky 1994)

Is there a sequence of finite groups such that their Cayley graphs are expanders or not for different generating sets (uniformly bounded)?

Kassabov 2003: yes for a subsequence of symmetric groups

Some applications

Question (Lubotzky 1994)

Is there a sequence of finite groups such that their Cayley graphs are expanders or not for different generating sets (uniformly bounded)?

Kassabov 2003: yes for a subsequence of symmetric groups

Gilman 1977: $\operatorname{Aut}\left(F_{n}\right)$ for $n \geq 3$ residually alternating
\Longrightarrow sequences of alternating groups with $\operatorname{Aut}\left(F_{n}\right)$ generators are expanders

This gives an alternative answer to Lubotzky's questions with explicit generating sets

Final remarks

- property (T) for $\operatorname{Aut}\left(F_{4}\right)$ confirmed by Martin Nietsche
- jointly with Uri Bader we proved a generalization of Ozawa’s characterization over $\mathbb{R} G$ of property (T) to higher cohomology with unitary coefficients

