On property (T) for $Aut(F_n)$

Piotr Nowak

Institute of Mathematics Polish Academy of Sciences Warsaw

Property (T)

G - group generated by a finite set S

Definition (Kazhdan 1966)

G has property (*T*) if there is $\kappa = \kappa(G, S) > 0$ such that

$$\sup_{s \in S} ||v - \pi_s v|| \ge \kappa ||v||$$

for every unitary representation without invariant vectors.

Kazhdan constant = optimal $\kappa(G, S)$

Property (T)

Finite groups have (T)

Classical examples of infinite groups with (T):

- higher rank simple Lie groups and their lattices
 SL_n(ℝ), SL_n(ℤ), n ≥ 3 (Kazhdan, 1966)
- automorphism groups of certain buildings, e.g. A₂
 (Cartwright-Młotkowski-Steger 1996, Pansu, Żuk, Ballmann-Świątkowski, 1997-98)
- certain random hyperbolic groups in the triangular and Gromov model (Żuk 2003)

Why is property (T) interesting?

Some applications:

 Margulis (1977): G with (T), N_i ⊆ G family of finite index subgroups with trivial intersection ⇒ Cayley graphs of G/N_i form expander graphs

Why is property (T) interesting?

Some applications:

- Margulis (1977): G with (T), N_i ⊆ G family of finite index subgroups with trivial intersection ⇒ Cayley graphs of G/N_i form expander graphs
- Fisher-Margulis (2003): G has (T), acts smoothly on a smooth manifold via an action ρ. Then any smooth action ρ' sufficiently close to ρ on the generators is conjugate to ρ.

Why is property (T) interesting?

Some applications:

- Margulis (1977): G with (T), N_i ⊆ G family of finite index subgroups with trivial intersection ⇒ Cayley graphs of G/N_i form expander graphs
- Fisher-Margulis (2003): G has (T), acts smoothly on a smooth manifold via an action ρ . Then any smooth action ρ' sufficiently close to ρ on the generators is conjugate to ρ .
- counterexamples to Baum-Connes type conjectures (Higson-Lafforgue-Skandalis 2003): K-theory classes represented by Kazhdan-type projections do not lie in the image of appropriate Baum-Connes assembly map

Question

Does $Aut(F_n)$ or $Out(F_n)$ have property (T)?

Earlier methods of proving (T) useless

Question

Does $Aut(F_n)$ or $Out(F_n)$ have property (T)?

Earlier methods of proving (T) useless

For small values of *n* the answer is negative:

- Aut (F_2) maps onto Out $(F_2) \simeq GL_2(\mathbb{Z})$
- Aut(F₃) maps onto ℤ (McCool 1989) and virtually onto F₂ (Grunewald-Lubotzky 2006)

 \implies no (T)

Ozawa's characterization

Laplacian in the real group ring $\mathbb{R}G$:

$$\Delta = |S| - \sum_{s \in S} s \quad \in \mathbb{R}G$$

Theorem (Ozawa, 2014)

(G,S) has property (T) iff for some $\lambda > 0$ and a finite collection of $\xi_i \in \mathbb{R}G$

$$\Delta^2 - \lambda \Delta = \sum_{i=1}^n \xi_i^* \xi_i$$

This is a finite-dim condition - perhaps possible to solve with computer assistance.

Property (T) quantified

If the equation is satisfied:

$$\Delta^2 - \lambda \Delta = \sum_{i=1}^n \xi_i^* \xi_i$$

then relation to Kazhdan constants:

$$\sqrt{\frac{2\lambda}{|S|}} \le \kappa(G,S)$$

we can also define the following notion

Definition

Kazhdan radius of (G, S) = smallest r > 0 such that supp $\xi_i \subseteq B(e, r)$ for all ξ_i above.

Implementation for $SL_n(\mathbb{Z})$

Implementation of this strategy pioneered by Netzer-Thom (2015):

a new, computer-assisted proof of (T) for $SL_3(\mathbb{Z})$ (generators: elementary matrices)

Improvement of Kazhdan constant:

$$\simeq 1/1800 \longrightarrow \simeq 1/6$$

Later also improved Kazhdan constants for $SL_n(\mathbb{Z})$ for

$$n = 3,4$$
 (Fujiwara-Kabaya)

$$n = 3, 4, 5$$
 (Kaluba-N.)

Setup: $SAut(F_n)$

Subgroup of $Aut(F_n)$, generated by Nielsen transformations:

$$R_{ij}^{\pm}(s_k) = \left\{ \begin{array}{ll} s_k s_j^{\pm 1} & \text{if } k=i \\ s_k & \text{oth.} \end{array} \right., \quad L_{ij}^{\pm}(s_k) = \left\{ \begin{array}{ll} s_j^{\pm 1} s_k & \text{if } k=i \\ s_k & \text{oth.} \end{array} \right.$$

Equivalently,

$$\mathsf{SAut}(F_n) = ab^{-1}(\mathsf{SL}_n(\mathbb{Z}))$$

under the map $\operatorname{Aut}(F_n) \to \operatorname{GL}_n(\mathbb{Z})$ induced by the abelianization $F_n \to \mathbb{Z}^n$.

 $SAut(F_n)$ has index 2 in $Aut(F_n)$

Main results

Theorem (Kaluba - N. - Ozawa)

 $SAut(F_5)$ has property (T) with Kazhdan constant

$$0.18 \le \kappa(\mathsf{SAut}(F_5))$$

Theorem (Kaluba - Kielak - N.)

 $SAut(F_n)$ has property (T) for $n \ge 6$ with Kazhdan radius 2 and Kazhdan constant

$$\sqrt{\frac{0.138(n-2)}{6(n^2-n)}} \le \kappa(\mathsf{SAut}(F_n)).$$

Certifying positivity via

semidefinite programming

 $\eta \in \mathbb{R}G$ positive if η is a sum of squares:

$$\eta = \sum_{i=1}^k \xi_i^* \xi_i$$

where supp $\xi_i \subseteq E$ - finite subset of G. (here always E = B(e,2))

 \iff

there is a positive definite $E \times E$ matrix P such that for $\mathbf{b} = [g_1, \dots, g_n]_{g_i \in E}$

$$\eta = \mathbf{b}P\mathbf{b}^T = \mathbf{b}QQ^T\mathbf{b}^T = (\mathbf{b}Q)(\mathbf{b}Q)^T$$

i-th column of Q = coefficients of ξ_i

Using the solver

To check if η is positive we can use a semidefinite solver to perform convex optimization over positive definite matrices:

find
$$P \in \mathbb{M}_{E \times E}$$
 such that:
$$\eta = \mathbf{b} P \mathbf{b}^T$$
 positive semi-definite

Assume now that a computer has found a solution P - we obtain

$$\eta \simeq \sum \xi_i^* \xi_i$$

this is not a precise solution

Assume now that a computer has found a solution *P* - we obtain

$$\eta \simeq \sum \xi_i^* \xi_i$$

this is not a precise solution

However this can be improved if the error is small in a certain sense and η belongs to the augmentation ideal IG

Lemma (Ozawa, Netzer-Thom)

 Δ is an order unit in IG: if $\eta = \eta^* \in IG$ then

$$\eta + R\Delta = \sum \xi_i^* \xi_i$$

for all sufficiently large $R \ge 0$.

Moreover, $R = 2^{2r-2} ||\eta||_1$ is sufficient, where supp $\eta \subseteq B(e, 2^r)$.

With this in mind we can try to improve our search of P to show that η is "strictly positive":

maximize
$$\lambda \geq 0$$
 under the conditions
$$\eta - \lambda \Delta = \mathbf{b} P \mathbf{b}^T$$

$$P \in \mathbb{M}_{E \times E} \text{ positive semi-definite}$$

Assume now that numerically on $B(e, 2^r)$

$$\eta - \lambda \Delta \simeq \mathbf{b} P \mathbf{b}^T$$

and $P = QQ^T$.

Assume now that numerically on $B(e, 2^r)$

$$\eta - \lambda \Delta \simeq \mathbf{b} P \mathbf{b}^T$$

and $P = QQ^T$.

Correct Q to \overline{Q} , where columns of Q sum up to 0.

$$\left\| \eta - \lambda \Delta - \mathbf{b} \overline{Q} \, \overline{Q}^T \mathbf{b}^T \right\|_1 \le \varepsilon$$

Assume now that numerically on $B(e, 2^r)$

$$\eta - \lambda \Delta \simeq \mathbf{b} P \mathbf{b}^T$$

and $P = QQ^T$.

Correct Q to \overline{Q} , where columns of Q sum up to 0.

$$\left\| \eta - \lambda \Delta - \mathbf{b} \overline{Q} \overline{Q}^T \mathbf{b}^T \right\|_1 \le \varepsilon$$

Then for $R = \varepsilon 2^{2r-2}$ or larger:

$$\eta - \underbrace{\lambda \Delta + R\Delta}_{(\lambda - R)\Delta} = \underbrace{\mathbf{b} \overline{Q} \, \overline{Q}^T \mathbf{b}^T}_{\sum \eta_i^* \eta_i} + \underbrace{\left(\eta - \lambda \Delta - \mathbf{b} \overline{Q} \, \overline{Q}^T \mathbf{b}^T + R\Delta\right)}_{\geq 0 \text{ by lemma}}$$

If $\lambda - R > 0$ then $\eta - (\lambda - R)\Delta \ge 0$ and in particular, $\xi \ge 0$.

Important:

The ℓ_1 -norm is computed in interval artihmetic.

This gives a mathematically rigorous proof of positivity of η .

To prove (T): apply to $\eta = \Delta^2 - \lambda \Delta$ and maximize for $\lambda > 0$

We want to use this strategy in $SAut(F_5)$.

Problem #1:

$$|B(e,2)| = 4641$$

P has 10771761 variables - too large for a solver to handle

To prove (T): apply to $\eta = \Delta^2 - \lambda \Delta$ and maximize for $\lambda > 0$

We want to use this strategy in $SAut(F_5)$.

Problem #1:

$$|B(e,2)| = 4641$$

P has 10771761 variables - too large for a solver to handle

We reduce the number of variables via symmetrization

The reduction for $SAut(F_5)$:

from 10 771 761 variables \rightarrow 13 232 variables in 36 blocks

Theorem (Kaluba-N.-Ozawa)

 $SAut(F_5)$ has (T) with Kazhdan constant ≥ 0.18027 .

Proof.

Find sum of squares decomposition for $\Delta^2 - \lambda \Delta$ on the ball of radius 2

Data from solver: P and $\lambda = 1.3$

$$8.30 \cdot 10^{-6} \le \left\| \Delta^2 - \lambda \Delta - \sum \xi_i^* \xi_i \right\|_1 \le 8.41 \cdot 10^{-6}$$

$$\implies$$
 $R = 8.41 \cdot 10^{-6} \cdot 2^{4-2}$ suffices

$$\lambda - R = 1.2999 > 0$$

Property (T) for $Aut(F_n)$, $n \ge 6$

 G_n with generating set S_n will denote either one of the families

- SAut(F_n) generatred by Nielsen transformations $R_{i,j}^{\pm}$, $L_{i,j}^{\pm}$
- $SL_n(\mathbb{Z})$ generated by elementary matrices $E_{i,j}^{\pm}$

G_n form a tower via the standard inclusions

$$F_n \subseteq F_{n+1}$$
 and $\mathbb{Z}_n \subseteq \mathbb{Z}_{n+1}$

 G_n form a tower via the standard inclusions

$$F_n \subseteq F_{n+1}$$
 and $\mathbb{Z}_n \subseteq \mathbb{Z}_{n+1}$

$$\mathcal{C}_n = (n-1)$$
-simplex on $\{1, \ldots, n\}$

$$E_n$$
 set of edges of \mathscr{C}_n = (unoriented) pairs $e = \{i, j\}$

Alt_n acts on edges:
$$\sigma(e) = \sigma(\{i, j\}) = \{\sigma(i), \sigma(j)\}$$

Мар

$$\begin{split} I_n:S_n\to E_n,\\ R_{ij}^\pm,L_{ij}^\pm\mapsto\{i,j\},\qquad E_{ij}^\pm\mapsto\{i,j\} \end{split}$$

 $\Delta_n \in \mathbb{R}G_n$ - Laplacian of G_n

A copy of G_2 is attached at each edge.

For an edge $e = \{i, j\}$ let $S_e = \{s \in S_n : I_n(s) = e\}$ and

$$\Delta_e = |S_e| - \sum_{t \in S_e} t$$

is the Laplacian of the copy of G_2 attached to e

We have $\sigma(\Delta_e) = \Delta_{\sigma(e)}$ for any $\sigma \in \mathsf{Alt}_n$

Given 2 edges they can

- 1. coincide
- 2. be adjacent (share a vertex)
- 3. be opposite (share no vertices) corresponding copies of G_2 commute

 Δ_e are building blocks of the Laplacians in G_n :

Lemma

$$\Delta_n = \sum_{e \in E_n} \Delta_e$$

 Δ_e are building blocks of the Laplacians in G_n :

Lemma

$$\Delta_n = \sum_{e \in E_n} \Delta_e = \frac{1}{(n-2)!} \sum_{\sigma \in \mathsf{Alt}_n} \sigma(\Delta_e).$$

 Δ_e are building blocks of the Laplacians in G_n :

Lemma

$$\Delta_n = \sum_{e \in E_n} \Delta_e = \frac{1}{(n-2)!} \sum_{\sigma \in \mathsf{Alt}_n} \sigma(\Delta_e).$$

Proposition

For $m \ge n \ge 3$ we have

$$\sum_{\sigma \in Alt_m} \sigma(\Delta_n) = \binom{n}{2} (m-2)! \Delta_m.$$

Main step in proving property (T) for G_n : a "stable decomposition" of $\Delta_n^2 - \lambda \Delta_n$

$$\Delta^2 = \left(\sum_e \Delta_e\right) \left(\sum_f \Delta_f\right) = \sum_{e,f} \Delta_e \Delta_f$$

$$\Delta^2 = \left(\sum_{e} \Delta_e\right) \left(\sum_{f} \Delta_f\right) = \sum_{e,f} \Delta_e \Delta_f$$

Define three elements of $\mathbb{R}G_n$:

1.
$$\operatorname{Sq}_n = \sum_{e \in E_n} \Delta_e^2$$

2.
$$Adj_n = \sum_{e \in E_n} \sum_{f \in Adj_n(e)} \Delta_e \Delta_f$$

3.
$$\operatorname{Op}_n = \sum_{e \in E_n} \sum_{f \in \operatorname{Op}_n(e)} \Delta_e \Delta_f$$

Then

$$\operatorname{\mathsf{Sq}}_n + \operatorname{\mathsf{Adj}}_n + \operatorname{\mathsf{Op}}_n = \Delta_n^2$$

Lemma

The elements Sq_n and Op_n are sums of squares.

Proof.

Obvious for Sq_n .

Lemma

The elements Sq_n and Op_n are sums of squares.

Proof.

Obvious for Sq_n .

For Op_n :

$$\Delta_e = \frac{1}{2} \sum_{t \in S_e} (1 - t)^* (1 - t)$$

e, f opposite edges then the generators associated to them commute and $\Delta_e\Delta_f$ can be rewritten as a sum of squares using

$$(1-t)^*(1-t)(1-s)^*(1-s) = ((1-t)(1-s))^*((1-t)(1-s))$$

Stability for Adj and Op:

Proposition

For $m \ge n \ge 3$ we have

$$\sum_{\sigma \in Alt_m} \sigma(Adj_n) = \left(\frac{1}{2}n(n-1)(n-2)(m-3)!\right)Adj_m$$

Stability for Adj and Op:

Proposition

For $m \ge n \ge 3$ we have

$$\sum_{\sigma \in Alt_m} \sigma(Adj_n) = \left(\frac{1}{2}n(n-1)(n-2)(m-3)!\right)Adj_m$$

Proposition

For $m \ge n \ge 4$ we have

$$\sum_{\sigma \in Alt_m} \sigma(\mathsf{Op}_n) = \left(2 \binom{n}{2} \binom{n-2}{n} (m-4)!\right) \mathsf{Op}_m$$

The following allows to prove (T) for $SL_n(Z)$ for $n \ge 3$ and for $SAut(F_n)$, $n \ge 7$.

Theorem

Let $n \ge 3$ and

$$Adj_n + k Op_n - \lambda \Delta_n = \sum \xi_i^* \xi_i$$

where supp $\xi_i \subset B(e, R)$, for some $k \geq 0$, $\lambda \geq 0$.

Then G_m has property (T) for every $m \ge n$ such that

$$k(n-3) \leq m-3$$
.

Moreover, the Kazhdan radius is bounded above by R.

Proof: Rewrite $\Delta_m^2 - \lambda \Delta_m$ using stability of Op, Adj and Δ .

$$\begin{split} \Delta_m^2 - \frac{\lambda(m-2)}{n-2} \Delta_m &= \operatorname{Sq}_m + \operatorname{Adj}_m + \operatorname{Op}_m - \frac{\lambda(m-2)}{n-2} \Delta_m \\ &= \operatorname{Sq}_m + \left(1 - \frac{k(n-3)}{m-3}\right) \operatorname{Op}_m + \\ &\frac{2}{n(n-1)(n-2)(m-3)!} \sum_{\sigma \in \operatorname{Alt}_m} \sigma\left(\operatorname{Adj}_n + k \operatorname{Op}_n - \lambda \Delta_n\right) \end{split}$$

When
$$1 - \frac{k(n-3)}{m-3} \ge 0$$
 we obtain the claim.

Results

Theorem

 $SAut(F_n)$ has (T) for $n \ge 6$, with Kazhdan radius 2 and Kazhdan constant estimate

$$\sqrt{\frac{0.138(n-2)}{6(n^2-n)}} \le \kappa(\mathsf{SAut}_n).$$

Theorem

 $SAut(F_n)$ has (T) for $n \ge 6$, with Kazhdan radius 2 and Kazhdan constant estimate

$$\sqrt{\frac{0.138(n-2)}{6(n^2-n)}} \le \kappa(\mathsf{SAut}_n).$$

Proof.

The case $n \ge 7$:

$$Adj_5 + 2 Op_5 - 0.138 \Delta_5$$

certified positive on the ball of radius 2.

The case n = 6 needs a different computation.

The case n = 5 so far can only be proven directly.

Currently also $Adj_4 + 100 Op_4 - 0.1\Delta \ge 0$ in $SAut(F_4)$ proving (T) for $n \ge 103$.

Theorem

 $SL_n(\mathbb{Z})$ has (T) for $n \ge 3$, with Kazhdan radius 2 and Kazhdan constant estimate

$$\sqrt{\frac{0.157999(n-2)}{n^2-n}} \le \kappa(\mathsf{SL}_n(\mathbb{Z})).$$

Proof.

$$Adj_3 - 0.157999\Delta_3$$

certified positive on the ball of radius 2.

This gives a new estimate on the Kazhdan constants of $SL_n(\mathbb{Z})$.

We obtain an even better estimate by certifying positivity of

$$Adj_5 + 1.5 Op_5 - 1.5 \Delta_5$$

in $\mathbb{R} \operatorname{SL}_5(\mathbb{Z})$:

$$\sqrt{\frac{0.5(n-2)}{n^2-n}} \le \kappa(\mathsf{SL}_n(\mathbb{Z})) \qquad \text{for } n \ge 6.$$

We obtain an even better estimate by certifying positivity of

$$Adj_5 + 1.5 Op_5 - 1.5 \Delta_5$$

in $\mathbb{R} \operatorname{SL}_5(\mathbb{Z})$:

$$\sqrt{\frac{0.5(n-2)}{n^2-n}} \le \kappa(\mathsf{SL}_n(\mathbb{Z})) \qquad \text{ for } n \ge 6.$$

Previously known bounds:

(Kassabov 2005)
$$\frac{1}{42\sqrt{n} + 860} \le \kappa (\mathsf{SL}_n(\mathbb{Z})) \le \sqrt{\frac{2}{n}} \qquad (\mathsf{Żuk} \ 1999)$$

Asymptotically, the new lower bound is 1/2 of the upper bound:

$$\frac{\dot{Z}uk's \text{ upper bound}}{\text{our lower bound}} = 2\sqrt{\frac{n-1}{n-2}} \longrightarrow 2 \qquad (n \ge 6)$$

Some applications

Product Replacement Algorithm generates random elements in finite groups

Lubotzky and Pak in 2001 showed that property (T) for $Aut(F_n)$ would explain the fast performance of the Product Replacement Algorithm

Now proven.

Some applications

Question (Lubotzky 1994)

Is there a sequence of finite groups such that their Cayley graphs are expanders or not for different generating sets (uniformly bounded)?

Kassabov 2003: yes for a subsequence of symmetric groups

Some applications

Question (Lubotzky 1994)

Is there a sequence of finite groups such that their Cayley graphs are expanders or not for different generating sets (uniformly bounded)?

Kassabov 2003: yes for a subsequence of symmetric groups

Gilman 1977: $Aut(F_n)$ for $n \ge 3$ residually alternating

 \implies sequences of alternating groups with $Aut(F_n)$ generators are expanders

This gives an alternative answer to Lubotzky's questions with explicit generating sets

Final remarks

- property (T) for Aut(F₄) confirmed by Martin Nietsche
- jointly with Uri Bader we proved a generalization of Ozawa's characterization over RG of property (T) to higher cohomology with unitary coefficients