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Nonlinear spectral gaps

Classical expanders

It follows from Cheeger’s inequality that a sequence of 3-regular graphs
Gn = (Vn,En) with |Vn| → ∞ as n→∞ is an expander graph sequence if
and only if there exists a universal constant γ ∈ (0,∞) such that for every
n ∈ N, every function f : Vn → `2 satisfies the Poincaré inequality

1

|Vn|2
∑

x ,y∈Vn

∥∥f (x)− f (y)
∥∥2

`2
≤ γ

|Vn|
∑

{x ,y}∈En

∥∥f (x)− f (y)
∥∥2

`2
.

Simple linear algebra shows that the optimal constant in this inequality
satisfies γ � supn≥1

1
1−λ2(Gn) , where λ2(G ) is the second largest eigenvalue

of the normalized adjacency matrix of a regular graph G .
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1

|Vn|2
∑

x ,y∈Vn

∥∥f (x)− f (y)
∥∥2

`2
≤ γ

|Vn|
∑

{x ,y}∈En

∥∥f (x)− f (y)
∥∥2

`2
.

Simple linear algebra shows that the optimal constant in this inequality
satisfies γ � supn≥1

1
1−λ2(Gn) , where λ2(G ) is the second largest eigenvalue

of the normalized adjacency matrix of a regular graph G .

Alexandros Eskenazis (Cambridge) Nonpositive curvature is not universal June 08, 2021 2 / 31



Nonlinear spectral gaps

Classical expanders

It follows from Cheeger’s inequality that a sequence of 3-regular graphs
Gn = (Vn,En) with |Vn| → ∞ as n→∞ is an expander graph sequence if
and only if there exists a universal constant γ ∈ (0,∞) such that for every
n ∈ N, every function f : Vn → `2 satisfies the Poincaré inequality
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Nonlinear spectral gaps

Nonlinear spectral gaps

The above functional characterization of expansion motivated the
following definition.

Definition

Let G = (V ,E ) be a finite 3-regular graph and (M, dM) be a metric
space. We will denote by γ(G , d2

M) the least constant γ ∈ (0,∞) such
that every function f : V →M satisfies the Poincaré inequality

1

|V |2
∑

x ,y∈V
dM
(
f (x), f (y)

)2 ≤ γ

|V |
∑
{x ,y}∈E

dM
(
f (x), f (y)

)2
.

We say that a sequence of 3-regular graphs Gn = (Vn,En) with |Vn| → ∞
as n→∞ is an expander graph sequence with respect to M if we have
supn≥1 γ(Gn, d

2
M) <∞.
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Nonlinear spectral gaps

Nonlinear spectral gaps and embeddings

Expanders with respect to metric spaces serve as pathological examples in
metric geometry. We shall present two instances of this phenomenon.

Observation (Gromov)

Suppose that Gn = (Vn,En) is a sequence of finite 3-regular graphs which
are expanders with respect to a metric space (M, dM). Then
{(Gn, dGn)}n≥1 do not embed equi-coarsely into M.

The nonlinear spectral gap inequality is one of the most important coarse
invariants available in the literature.
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Nonlinear spectral gaps

Nonlinear spectral gaps and embeddings (continued)

Observation (Matoušek)

Suppose that Gn = (Vn,En) is a sequence of finite 3-regular graphs which
are expanders with respect to a metric space (M, dM). Then any
embedding of (Gn, dGn) into M incurs bi-Lipschitz distortion at least a
constant multiple of log |Vn|.

Proof. Suppose that f is such an embedding. Then

1

|Vn|
∑

{x ,y}∈En

dM
(
f (x), f (y)

)2 ≤
‖f ‖2

Lip

|Vn|
∑

{x ,y}∈En

dGn(x , y)2 .
∥∥f ∥∥2

Lip

and (since at least 1% of the pairs of vertices in Vn are log n/1010 apart),

1

|Vn|2
∑

x ,y∈Vn

dM
(
f (x), f (y)

)2 ≥ 1

|Vn|2
∥∥f −1

∥∥2

Lip

∑
x ,y∈Vn

dGn(x , y)2 &
(log n)2∥∥f −1

∥∥2

Lip

.
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Nonlinear spectral gaps
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Nonlinear spectral gaps

Nonlinear spectral gaps and embeddings (continued)

The importance of the logarithmic bound in Matoušek’s observation stems
from the following imporant embedding theorem of Bourgain.

Theorem (Bourgain’s embedding theorem, 1985)

Any finite metric space (M, dM) embeds into `2 with distortion at most a
constant multiple of log |M|.

In particular, Matoušek’s observation along with the existence of classical
expanders implies that the distortion bound in Bourgain’s theorem is
asymptotically sharp as a function on |M|.
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Metric spaces of bounded curvature

The parallelogram identity

It is well known that Hilbert spaces (i.e. Euclidean geometry) are
characterised among all normed spaces by the parallelogram identity

∀ x , y ∈ H, ‖x − y‖2
H + ‖x + y‖2

H = 2‖x‖2
H + 2‖y‖2

H

z

x yx+y
2

Equivalently, if x , y , z ∈ H then∥∥∥z − x + y

2

∥∥∥2

H
=
‖z − x‖2

H

2
+
‖z − y‖2

H

2
−
‖x − y‖2

H

4
.
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Metric spaces of bounded curvature

The parallelogram identity in Riemannian manifolds

Let (M, g) be a Riemannian manifold and let {x , y , z} be a triangle in M.
Let m be any metric midpoint of x , y , i.e. a point of M such that
dM(x ,m) = dM(m, y) = 1

2dM(x , y).

z

x y

z

x y

z

x y

curv = 0 curv ≤ 0 curv ≥ 0

m

m

m

m = midpt(x, y)

One would expect that

dcurv≤0(z ,m) ≤ dcurv=0(z ,m) ≤ dcurv≥0(z ,m).
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Metric spaces of bounded curvature

The Cartan–Alexandrov–Toponogov theorem

Theorem

A complete, simply connected Riemannian manifold (M, g) has
nonpositive sectional curvature if and only if for every x , y , z ∈M and
every metric midpoint m of x , y , we have

dM(z ,m)2 ≤ 1

2
dM(z , x)2 +

1

2
dM(z , y)2 − 1

4
dM(x , y)2.

Similarly, (M, g) has nonnegative sectional curvature if and only if the
reverse inequality holds true for every such quadruple {x , y , z ,m} in M.
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Metric spaces of bounded curvature

Hadamard spaces

A complete metric space (X , dX ) is called geodesic if every two points
x , y ∈ X have at least one metric midpoint.

Definition

A complete geodesic metric space (X , dX ) is said to be nonpositively
curved (or simply a Hadamard space) if for every x , y , z ∈ X and every
metric midpoint m of x , y , we have

dX (z ,m)2 ≤ 1

2
dX (z , x)2 +

1

2
dX (z , y)2 − 1

4
dX (x , y)2.

Similarly, (X , dX ) is said to be nonnegatively curved if the reverse
inequality holds true for every such quadruple {x , y , z ,m} in X .
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Metric spaces of bounded curvature

Examples of Hadamard spaces

Examples of Hadamard spaces include:

• Complete, simply connected Riemannian manifolds of nonpositive
sectional curvature

• Gromov–Hausdorff limits of complete, simply connected Riemannian
manifolds of nonpositive sectional curvature

• Metric trees

• Euclidean cones over metric spaces of curvature bounded above by 1
(Berestovskĭı, 1983)
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Metric spaces of bounded curvature

Questions of interest

We are mainly interested in subsets of Hadamard spaces.

The isometric structure of Hadamard spaces is (in a way) well understood:
there are many satisfactory criteria to characterise those geodesic metric
spaces which are isometric to a Hadamard space.

However, it remains a challenging open problem (Gromov, 1999) to obtain
an intrinsic characterisation of those metric spaces which admit a
bi-Lipschitz (or even isometric) embedding into a Hadamard space.
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Expanders with respect to Hadamard spaces

Expanders with respect to Hadamard spaces (continued)

If we had a positive answer to the stronger question above, then we would
deduce the following nonembeddability results.

• There exists a metric space which does not embed coarsely into any
Hadamard space. The existence of such a metric space was first
asked by Gromov (1993).

• For arbitrarily large n, there exists an n-point metric space Mn such
that any embedding of Mn into a Hadamard space incurs distortion
at least a constant multiple of log n, thus matching Bourgain’s bound.

We will refer to the latter problem as Bourgain’s embedding problem in
nonpositive curvature.
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Expanders with respect to Hadamard spaces

Partial results to Gromov’s question

Examples of spaces which do not embed coarsely into Hilbert space:

• (Dranishnikov–Gong–Lafforgue–Yu, 2002) The Banach space c0 does
not embed coarsely into Hilbert space.

• (Gromov, 2003) Expander graph sequences do not embed
equi-coarsely into Hilbert space.

• (Khot–Naor, 2006) Specifically crafted flat tori do not embed
equi-coarsely into Hilbert space.

• (Johnson–Randrianarivony, 2006) The Banach spaces `p for p > 2 do
not embed coarsely into Hilbert space.

• (Pestov, 2008) The Urysohn metric space U does not embed coarsely
into Hilbert space.

These results have been extended to treat target spaces which behave like
Hilbert spaces, including nonpositively curved Riemannian manifolds,
spaces of bounded singularities and uniformly convex Banach spaces.
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Expanders with respect to Hadamard spaces

Digression: the Andoni–Naor–Neiman theorem

In the nonnegative curvature regime, the following surprising fact is true.

Theorem (Andoni–Naor–Neiman, 2015)

Every metric space admits a coarse embedding in a nonnegatively curved
metric space.

In fact, it follows from work of Zolotov (2017) that every metric space
admits a coarse embedding in a nonnegatively curved manifold and the
sharp moduli are known to be ω(t),Ω(t) �

√
t.
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Expanders with respect to Hadamard spaces

The main theorem

Theorem (E.–Mendel–Naor, 2018)

The Banach spaces `p for p > 2 do not embed coarsely into any
Hadamard space.

This result along with the Andoni–Naor–Neiman theorem highlight a
qualitative distinction between nonpositive and nonnegative curvature.
The large scale structure of nonpositively curved spaces turns out to be
better behaved that the one of nonnegatively curved ones, contrary to the
intuition from classical Riemannian geometry.
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Digression: the Ribe program

Metric invariants and the Ribe program

The Ribe program (initiated by Bourgain in 1986) is a long standing
research program in metric geometry, whose main scope is to build a
network of analogies between the structural theory of finite dimensional
normed spaces and that of finite (nonlinear) metric spaces.

In particular, intuition stemming from classical results in Banach space
theory is often fundamental in designing metric invariants which are used
to prove nonembeddability of metric spaces into others.
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Digression: the Ribe program

An example: Markov type 2

Definition (K. Ball)

A metric space (X , dX ) has Markov type 2 with constant M ∈ [1,∞) if for
every n ∈ N, every stationary reversible Markov chain {Zt}∞t=0 with values
in {1, . . . , n} and every function f : {1, . . . , n} → (X , dX ), we have

(∗) ∀ t ≥ 1, EdX
(
f (Zt), f (Z0)

)2 ≤ M2tEdX
(
f (Z1), f (Z0)

)2
.

Morally this says that EdX
(
f (Zt), f (Z0)

)
.
√
t as t →∞.

Clearly having Markov type 2 is a bi-Lipschitz invariant and it can be
shown (K. Ball, 1993) that Hilbert spaces have Markov type 2 with
constant 1. Therefore, metric spaces which do not satisfy (∗) do not
bi-Lipschitzly embed into Hilbert space. For instance, this can be inferred
for any metric space which contains the family ({0, 1}n, ‖ · ‖1)∞n=1.
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Sharp metric cotype

Sharp metric cotype

Our main technical contribution is the following theorem.

Theorem (E.–Mendel–Naor, 2018)

Let (X , dX ) be a Hadamard space. For every m, n ∈ N with m ≥
√
n,

every function f : Zn
2m → (X , dX ) satisfies

n∑
i=1

∑
x∈Zn

2m

dX
(
f (x + mei ), f (x)

)2
.

m2

2n

∑
ε∈{−1,1}n

∑
x∈Zn

2m

dX
(
f (x + ε), f (x)

)2
.

In the jargon of the Ribe program, a metric space satisfying the conclusion
of the above theorem is said to have sharp metric cotype 2.

Remark. We have shown (E.–Mendel–Naor, 2021+) that nonnegatively
curved spaces also have metric cotype 2.
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Theorem (E.–Mendel–Naor, 2018)

Let (X , dX ) be a Hadamard space. For every m, n ∈ N with m ≥
√
n,

every function f : Zn
2m → (X , dX ) satisfies

n∑
i=1

∑
x∈Zn

2m

dX
(
f (x + mei ), f (x)

)2
.

m2

2n

∑
ε∈{−1,1}n

∑
x∈Zn

2m

dX
(
f (x + ε), f (x)

)2
.

In the jargon of the Ribe program, a metric space satisfying the conclusion
of the above theorem is said to have sharp metric cotype 2.

Remark. We have shown (E.–Mendel–Naor, 2021+) that nonnegatively
curved spaces also have metric cotype 2.
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Sharp metric cotype

Sharp metric cotype implies coarse nonuniversality

We will show that the grids [m]n∞ := ({1, . . . ,m}n, ‖ · ‖∞) do not
equi-coarsely embed into any Hadamard space. In particular, `∞ (or c0)
does not coarsely embed into any Hadamard space. By abuse of notation,
we will identify {1, . . . , 2m} with Z2m.

Let m, n ∈ N with m =
√
n and consider a mapping f : {1, . . . , 2m}n → X

such that

∀ x , y ∈ [m]n∞, ω
(
‖x − y‖∞

)
≤ dX

(
f (x), f (y)

)
≤ Ω

(
‖x − y‖∞

)
,

where limt→∞ ω(t) =∞.
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Sharp metric cotype

Sharp metric cotype implies coarse nonembeddability

Recall that

n∑
i=1

∑
x∈Zn

2m

dX
(
f (x + mei ), f (x)

)2
.

m2

2n

∑
ε∈{−1,1}n

∑
x∈Zn

2m

dX
(
f (x + ε), f (x)

)2
.

Then,

RHS ≤ m2(2m)n

2n

∑
ε∈{−1,1}n

Ω(‖ε‖∞)2 = n(2m)nΩ(1)2

and

LHS ≥ (2m)n
n∑

i=1

ω(‖mei‖∞)2 = n(2m)nω
(√

n
)2
.

Therefore
ω
(√

n
)
. Ω(1) <∞

which is a contradiction. 2
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Metric space valued martingales and proof of the main theorem

Barycenter maps

We will need some terminology. For a set X , denote by P<∞
X the set of

all finitely supported probability measures on X . A map B : P<∞
X → X is

called a barycenter map if B(δx) = x for every x ∈ X .

Example: If X is a vector space, then we set

B(µ) =

∫
X
x dµ(x) =

N∑
i=1

µ({xi})xi ,

where {x1, . . . , xN} is the support of µ.
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Metric space valued martingales and proof of the main theorem

Conditional barycenters

Let X be a set equipped with a barycenter map B : P<∞
X → X , Ω be a

finite set and µ : 2Ω → [0, 1] be a probability measure with full support,
i.e. µ({ω}) > 0 for every ω ∈ Ω. Fix a random variable Z : Ω→ X .

For a σ-algebra F ⊆ 2Ω, the µ-conditional barycenter of Z is the function
Bµ(Z |F ) : Ω→ X given by

Bµ(Z |F )(ω) = B
( 1

µ
(
F (ω)

) ∑
a∈F (ω)

µ(a)δZ(a)

)
,

where F (ω) is the cluster of the partition inducing F which contains ω.
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Metric space valued martingales and proof of the main theorem

Barycentric martingales

Definition (barycentric martingales)

Let X be a set equipped with a barycenter map, Ω be a finite set,
µ : 2Ω → [0, 1] be a probability measure with full support and {Fi}ni=0 a
filtration on Ω. A sequence of functions {Zi : Ω→ X}ni=0 is called a
µ-martingale with respect to the filtration {Fi}ni=0

∀ i ∈ {1, . . . , n}, Bµ

(
Zi |Fi−1

)
= Zi−1.

Warning! The tower property

∀ 0 ≤ i < j ≤ n, Bµ

(
Zj |Fi

)
= Zi

fails in general.
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Metric space valued martingales and proof of the main theorem

Barycenters in Hadamard spaces

We will need the following classical fact.

Lemma

Let (X , dX ) be a Hadamard space. Then, the function B : P<∞
X → X

given by

B(µ) = the point z ∈ X which minimises

∫
X
dX (a, z)2 dµ(a)

is a well defined barycenter map which additionally satisfies the inequality

(∗) dX
(
z ,B(µ)

)2
+

∫
X
dX
(
a,B(µ)

)2
dµ(a) ≤

∫
X
dX (a, z)2 dµ(a)

for every z ∈ X and µ ∈P<∞
X .

Remark: For µ = 1
2δx + 1

2δy , inequality (∗) is the definition of
nonpositively curved metric spaces.

Alexandros Eskenazis (Cambridge) Nonpositive curvature is not universal June 08, 2021 26 / 31



Metric space valued martingales and proof of the main theorem

Barycenters in Hadamard spaces

We will need the following classical fact.

Lemma

Let (X , dX ) be a Hadamard space. Then, the function B : P<∞
X → X

given by

B(µ) = the point z ∈ X which minimises

∫
X
dX (a, z)2 dµ(a)

is a well defined barycenter map

which additionally satisfies the inequality

(∗) dX
(
z ,B(µ)

)2
+

∫
X
dX
(
a,B(µ)

)2
dµ(a) ≤

∫
X
dX (a, z)2 dµ(a)

for every z ∈ X and µ ∈P<∞
X .

Remark: For µ = 1
2δx + 1

2δy , inequality (∗) is the definition of
nonpositively curved metric spaces.

Alexandros Eskenazis (Cambridge) Nonpositive curvature is not universal June 08, 2021 26 / 31



Metric space valued martingales and proof of the main theorem

Barycenters in Hadamard spaces

We will need the following classical fact.

Lemma

Let (X , dX ) be a Hadamard space. Then, the function B : P<∞
X → X

given by

B(µ) = the point z ∈ X which minimises

∫
X
dX (a, z)2 dµ(a)

is a well defined barycenter map which additionally satisfies the inequality

(∗) dX
(
z ,B(µ)

)2
+

∫
X
dX
(
a,B(µ)

)2
dµ(a) ≤

∫
X
dX (a, z)2 dµ(a)

for every z ∈ X and µ ∈P<∞
X .

Remark: For µ = 1
2δx + 1

2δy , inequality (∗) is the definition of
nonpositively curved metric spaces.

Alexandros Eskenazis (Cambridge) Nonpositive curvature is not universal June 08, 2021 26 / 31



Metric space valued martingales and proof of the main theorem

Barycenters in Hadamard spaces

We will need the following classical fact.

Lemma

Let (X , dX ) be a Hadamard space. Then, the function B : P<∞
X → X

given by

B(µ) = the point z ∈ X which minimises

∫
X
dX (a, z)2 dµ(a)

is a well defined barycenter map which additionally satisfies the inequality

(∗) dX
(
z ,B(µ)

)2
+

∫
X
dX
(
a,B(µ)

)2
dµ(a) ≤

∫
X
dX (a, z)2 dµ(a)

for every z ∈ X and µ ∈P<∞
X .

Remark: For µ = 1
2δx + 1

2δy , inequality (∗) is the definition of
nonpositively curved metric spaces.
Alexandros Eskenazis (Cambridge) Nonpositive curvature is not universal June 08, 2021 26 / 31



Metric space valued martingales and proof of the main theorem

Orthogonality of martingale difference sequences revisited

• One of the fundamental properties of real valued (or Hilbert space
valued) martingales {Zi}ni=0 is the identity

(1) E‖Zn‖2
H = E‖Z0‖2

H +
n∑

i=1

E‖Zi − Zi−1‖2
H.

• Applying the identity for a single random variable Z1 = Z and Z0 = EZ ,
(1) becomes

(2) E‖Z‖2
H = ‖EZ‖2

H + E‖Z − EZ‖2
H.

• Finally, if P(Z = x) = P(Z = y) = 1
2 , then (2) is simply

(3)
‖x‖2

H + ‖y‖2
H

2
=
∥∥∥x + y

2

∥∥∥2

H
+
∥∥∥x − y

2

∥∥∥2

H
,

the parallelogram identity!
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Metric space valued martingales and proof of the main theorem

Suborthogonality of Hadamard margingale differences

In Hadamard spaces (X , dX ), we have

(3′) dX
(
z ,B(x , y)

)2 ≤ 1

2
dX (z , x)2 +

1

2
dX (z , y)2 − 1

4
dX (x , y)2,

which implies (∗), i.e. that

(2′) dX
(
z ,B(µ)

)2
+

∫
X
dX
(
a,B(µ)

)2
dµ(a) ≤

∫
X
dX (z , a)2 dµ(a).

Tensorising these inequalities gives the following.

Proposition (Mendel–Naor, 2013)

Every Hadamard space valued martingale {Zi}ni=0 satisfies the inequality

(1′) EdX (Z0, z)2 +
n∑

i=1

EdX (Zi ,Zi−1)2 ≤ EdX (Zn, z)2,

for every z ∈ X .
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Metric space valued martingales and proof of the main theorem

Proof of the main theorem

Recall that we have to prove that for every Hadamard space (X , dX ), and
m ≥

√
n every function f : Zn

4m → X satisfies

n∑
i=1

∑
x∈Zn

4m

dX
(
f (x +2mei ), f (x)

)2
.

m2

2n

∑
ε∈{−1,1}n

∑
x∈Zn

4m

dX
(
f (x +ε), f (x)

)2
.

Idea: For fixed x ∈ Zn
4m, let fx : {−1, 1}n → X be given by

fx(ε) = f (x + ε). Let Fi = σ(ε1, . . . , εi ) be the usual filtration on
{−1, 1}n and for h : {−1, 1}n → X , let Enh = h and

∀ i ∈ {0, 1, . . . , n − 1}, Eih = Bunif

(
Ei+1h|Fi

)
.

We will apply the martingale inequality for the (4m)n martingales{
{Ei fx}ni=0

}
x∈Zn

4m
and use the triangle inequality.
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4m → X satisfies

n∑
i=1

∑
x∈Zn

4m

dX
(
f (x +2mei ), f (x)

)2
.

m2

2n

∑
ε∈{−1,1}n

∑
x∈Zn

4m

dX
(
f (x +ε), f (x)

)2
.

Idea: For fixed x ∈ Zn
4m, let fx : {−1, 1}n → X be given by

fx(ε) = f (x + ε). Let Fi = σ(ε1, . . . , εi ) be the usual filtration on
{−1, 1}n and for h : {−1, 1}n → X , let Enh = h and

∀ i ∈ {0, 1, . . . , n − 1}, Eih = Bunif

(
Ei+1h|Fi

)
.

We will apply the martingale inequality for the (4m)n martingales{
{Ei fx}ni=0

}
x∈Zn

4m
and use the triangle inequality.
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Towards Bourgain’s embedding problem in nonpositive curvature

Quotients of the cube à la Khot and Naor

Khot and Naor (2006) have shown that every function f : Fn
2 → `2 which

is invariant under an F2-subspace V of Fn
2 satisfies

(∗) 1

22n

∑
x ,y∈Fn

2

∥∥f (x)− f (y)
∥∥2

`2
.
`(V )−1

2n

n∑
i=1

∑
x∈Fn

2

∥∥f (x + ei )− f (x)
∥∥2

`2
,

where
`(V ) = min

x∈V⊥\{0}
‖x‖`1 .

It is a classical fact in coding theory that for every n ≥ 1 there exists such
a code Vn with n

4 < dimVn <
3n
4 and `(Vn) � n. It then follows from

Khot and Naor’s inequality that any embedding of Fn
2/Vn into `2 incurs

distortion proportional to n � log |Fn
2/Vn|.
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Towards Bourgain’s embedding problem in nonpositive curvature

Quotients of the cube à la Khot and Naor (continued)

The proof of (∗) relies on Parseval’s identity along with the spectral
observation that if a function is V -invariant, then all the Fourier
coefficients in its Walsh expansion of order less than `(V ) vanish.

Question

Can one prove a Khot–Naor-type inequality for Hadamard space valued
functions on Fn

2?

Theorem (E.–Ivanisvili, 2020)

Let γ be the Gaussian measure on R. If f : R→ R is a smooth function
such that Eγ [f (X )X k ] = 0 for all k ∈ {0, 1, . . . , d}, then for any
1 < p <∞

Eγ
∣∣f (X )

∣∣p ≤ cp√
d
Eγ
∣∣f ′(X )

∣∣p.

Alexandros Eskenazis (Cambridge) Nonpositive curvature is not universal June 08, 2021 31 / 31



Towards Bourgain’s embedding problem in nonpositive curvature
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Quotients of the cube à la Khot and Naor (continued)

The proof of (∗) relies on Parseval’s identity along with the spectral
observation that if a function is V -invariant, then all the Fourier
coefficients in its Walsh expansion of order less than `(V ) vanish.

Question

Can one prove a Khot–Naor-type inequality for Hadamard space valued
functions on Fn

2?

Theorem (E.–Ivanisvili, 2020)

Let γ be the Gaussian measure on R. If f : R→ R is a smooth function
such that Eγ [f (X )X k ] = 0 for all k ∈ {0, 1, . . . , d}, then for any
1 < p <∞

Eγ
∣∣f (X )

∣∣p ≤ cp√
d
Eγ
∣∣f ′(X )

∣∣p.
Alexandros Eskenazis (Cambridge) Nonpositive curvature is not universal June 08, 2021 31 / 31



Towards Bourgain’s embedding problem in nonpositive curvature

Thank you!
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