Weak amenability and \tilde{A}_2 -geometry

Online workshop: Interactions between expanders, groups and operator algebras

Mikael de la Salle joint work with Stefan Witzel (Giessen) and Jean Lécureux (Orsay) June 9 2021

CNRS, École Normale Supérieure de Lyon

Approximation properties

 \tilde{A}_2 buildings

Local harmonic analysis in \tilde{A}_2 -buildings

Approximation properties

Approximation properties for C*-algebras

(Banach, Grothendieck) A Banach space X has the Approximation Property (AP) if $id: X \to X$ belongs to the closure of finite rank operators for the topology of uniform convergence on compact subsets of X.

Many spaces without AP have been constructed, **one** existing space has been shown : $B(\ell_2)$ (Szankowski).

Approximation properties for C*-algebras

(Banach, Grothendieck) A Banach space X has the Approximation Property (AP) if $id: X \to X$ belongs to the closure of finite rank operators for the topology of uniform convergence on compact subsets of X.

Many spaces without AP have been constructed, **one** existing space has been shown : $B(\ell_2)$ (Szankowski).

A fascinating open question

Find an **explicit and natural** separable Banach space without AP.

Candidates in the 1970's :

- $C^*_{\lambda}(F_2)$
- $C^{*}(F_{2})$
- $C^*_{\lambda}(\mathrm{SL}_3(\mathbf{Z}))$

Approximation properties for C*-algebras

(Banach, Grothendieck) A Banach space X has the Approximation Property (AP) if $id: X \to X$ belongs to the closure of finite rank operators for the topology of uniform convergence on compact subsets of X.

Many spaces without AP have been constructed, **one** existing space has been shown : $B(\ell_2)$ (Szankowski).

A fascinating open question

Find an explicit and natural separable Banach space without AP.

Candidates in the 1970's :

- $\frac{C^*(F_2)}{\lambda}$ No : Haagerup 1979
- C*(F₂) Still open
- $C^*_{\lambda}(SL_3(\mathbf{Z}))$ Still open.

Theorem (Haagerup 79)

 $C^*_{\lambda}(F_2)$ has the AP (even MAP).

Proof relies heavily on the geometry of the tree (Cayley graph).

Theorem (Haagerup 79)

```
C_{\lambda}^{*}(F_{2}) has the AP (even MAP).
```

Proof relies heavily on the geometry of the tree (Cayley graph). It proves more : it has OAP and even CBAP with constant 1.

A C*-algebra A has the Operator Space AP (OAP) if there is a net of finite rank operators such that $T_i \otimes id$ converges pointwise (iff unif. on compacta) to id on $A \otimes \mathcal{K}(\ell_2)$.

Def : A has CBAP if moreover $\sup_i ||T_i \otimes id|| \le C < \infty$. And inf $C = \Lambda_{cb}(A)$.

Haagerup's diagonal averaging trick

A notation : if $\varphi \colon \mathbf{G} \to \mathbf{C}$ is a function

 $\|\varphi\|_{cb} := \inf\{\sup_{g,h} \|\xi(g)\|_{\ell_2} \|\eta(h)\|_{\ell_2}) \mid \varphi(g^{-1}h) = \langle \xi(h), \eta(g) \rangle\}.$

Theorem (Haagerup + many other)

For a discrete group *G*, $C_{\lambda}^{*}(G)$ has CBAP with constant $\leq C$ if and only if *G* is weakly amenable with constant $\leq C$: there is a net $\varphi_{i}: G \rightarrow \mathbf{C}$ of finite support such that $\lim_{i} \varphi_{i}(g) = 1$ for all *g* and $\sup_{i} \|\varphi_{i}\|_{cb} \leq C$.

Used a lot, to show :

- (Haagerup, de Cannière, Cowling) A simple connected Lie group is weakly amenable iff $\mathrm{rk}_{R}(G)\leq$ 1.
- (Ozawa) Gromov-hyperbolic groups are weakly amenable.
- (Mizuta + Guentner-Higson) Groups acting on finite dim CAT(o) cube complex.

\tilde{A}_2 buildings

\tilde{A}_2 buildings, 1

Definition (formal, see later for better)

A (locally finite) \tilde{A}_2 building X is a 2-dimensional simply connected simplicial complex whose link is the incidence graph of a (finite) projective space.

From now on, X will always denote a locally finite \tilde{A}_2 building.

(Here) finite projective space. Take k a (finite) field, $P^2k := k^3/k^*$. It contains points and lines. Incidence relation $p \sim \ell$ if p belongs to ℓ .

Example : if $F = \mathbf{Q}_p$ and $\mathcal{O} = \mathbf{Z}_p$ or $\mathbf{F}_p((t))$ and $\mathcal{O} = \mathbf{F}_p[[T]]$ then $G/K := \operatorname{PGL}_3(F)/\operatorname{PGL}_3(\mathcal{O})$ with edges $gK \sim hK$ if $||g^{-1}h|| ||h^{-1}g|| = p$ (+ fill triangles) is an \tilde{A}_2 building.

There are many other "exotic" examples, whose automorphism group is in general countable (Radu), sometimes trivial but sometimes quite large=cocompact (Ronan, Kantor, Radu...).

Approximation properties for \tilde{A}_2 -lattices.

Today's Theorem (Lécureux-dlS-Witzel 20+)

Let G be discrete group acting by isometries on a locally finite \tilde{A}_2 building. Assume that the action is cocompact and with finite stabilizers. Then G is not weakly amenable.

A few remarks :

- More generally, $C^*_{\lambda}(G)$ does not have OAP; neither does $L_p(\mathcal{L}G)$ for $p \notin [\frac{4}{3}, 4]$.
- This generalizes previous results for lattices in SL₃(*F*) by Haagerup 86 and Lafforgue-dlS 11, and gives a geometric proof of these results.
- This is one of the outcomes of a broader project where we try to develop hamormonic analysis on \tilde{A}_2 buildings. Other outcomes include strong property (T) or vanishing of ℓ_p -cohomology.

Recall

Definition

An \tilde{A}_2 building is a 2-dimensional simply connected simplicial complex whose link is the incidence graph of a finite projective space.

The way we think of it : a kind of 2-dimensional tree, obtained by pasting in a tree-like structure infinitely many copies of a \mathbf{R}^2 tesselated by equilateral triangles.

To connect with standard terminology : \mathbf{R}^2 = appartments; equilateral triangles = chambers.

R² tesselated by equilateral triangles...

9

... arranged in a tree-like way

FIGURE 1 – A fragment of an \tilde{A}_2 building for q = 2 (picture by Greg Kuperberg)

Parameter q of a building : q + 1 is the number of triangles to which every edge belongs.

Harmonic analysis on an \tilde{A}_2 building, after Cartwright-Młotkowski 94

- Relative position of a pair $(x, y) \in X$ is given by $\sigma(x, y) = \lambda \in \mathbb{N}^2$.
- The distance d(x, y) is $\lambda_1 + \lambda_2$.
- Define the sphere $S_{\lambda}(x)$

 $\{\mathbf{y}\in\mathbf{X}\mid\sigma(\mathbf{x},\mathbf{y})=\lambda\}.$

• $A_{\lambda} \in B(\ell_2(X))$ the averaging operator

$$A_{\lambda}f(x) = \frac{1}{|S_{\lambda}|} \sum_{y \in S_{\lambda}(x)}$$

Harmonic analysis on an \tilde{A}_2 building 2

Theorem (Cartwright-Młotkowski 94)

The *-algebra generated by $\{A_{\lambda} \mid \lambda \in \mathbb{N}^2\}$ is commutative.

It is a generalization of the (Hecke) algebra of K-biinvariant functions on $G = SL_3(F)$.

Philosophy : in our generality, there is no *G* and no *K* (so no Gelfand pair!), but the spectrum of the Gelfand pair is there somewhere hidden.

Later : Cartwright-Mantero-Steger-Zappa compute explicitely the spectrum of the universal representation of the above commutative *-algebra. Consequence : \tilde{A}_2 groups have property (T).

Harmonic analysis on an \tilde{A}_2 building 2

Theorem (Cartwright-Młotkowski 94)

The *-algebra generated by $\{A_{\lambda} \mid \lambda \in \mathbb{N}^2\}$ is commutative.

It is a generalization of the (Hecke) algebra of K-biinvariant functions on $G = SL_3(F)$.

Philosophy : in our generality, there is no *G* and no *K* (so no Gelfand pair!), but the spectrum of the Gelfand pair is there somewhere hidden.

Later : Cartwright-Mantero-Steger-Zappa compute explicitly the spectrum of the universal representation of the above commutative *-algebra. Consequence : \tilde{A}_2 groups have property (T).

Our contribution : developp **local** tools to further perform harmonic analysis on *X*.

Hecke algebra of the building : algebra generated by $\{A_{\lambda} \mid \lambda \in \mathbb{N}^2\}$.

Our main result : for **many** Banach space representations (π, E) of the Hecke algebra on vector valued functions on X, $\pi(A_{\lambda})$ converges to a projection on the type-constant functions $X \to E$.

Examples of *E* :

- Space of functions on X whose gradient is in ℓ^p ($p < \infty$) \implies vanishing of ℓ^p -cohomology.
- If Γ acts cocompactly on A_{λ} , E=space of Γ -invariant Schur multipliers $X \times X \to \mathbf{C} \implies$ non weak amenability of Γ .
- (π, E) =induced representation of a representation of Γ with small exponential growth $\implies \Gamma$ has Lafforgue's strong property (T).

Assume G acts geometrically on X. Let $\psi: X \times X \to \mathbf{C}$ be a G-invariant Schur multiplier (that is $\psi(x, y) = \langle \xi_x, \eta_y \rangle$ for bounded functions $\xi, \eta: X \to \ell_2$).

Then for every $x \in X$, there is $\psi_{\infty}(x) \in \mathbf{C}$ such that

$$\sum_{x\in X/\Gamma} \frac{1}{|\Gamma_x|} \left| \psi_{\infty}(x) - \frac{1}{|S_{\lambda}(x)|} \sum_{y\in S_{\lambda}(x)} \psi(x,y) \right| \leq Cq^{-|\lambda|/2} \|\psi\|_{cb}.$$

Local harmonic analysis in \tilde{A}_2 -buildings

Two main ingredients

- Local harmonic analysis : finite volume, fine analysis.
- Global analysis : exploring the whole building at large scales using the local analysis.

Two main ingredients

- Local harmonic analysis : finite volume, fine analysis.
- Global analysis : exploring the whole building at large scales using the local analysis.

Strongly inspired by Vincent Lafforgue, who introduced these two ingredients for $SL_3(F)$. In that case, the ingredients become

- Harmonic analysis in the maximal compact subgroup *K*.
- Exploration of the whole symmetric space *G*/*K* using distorted copies of *K*, exploit hyperbolicity transverse to the flats.

Two main ingredients

- Local harmonic analysis : finite volume, fine analysis.
- Global analysis : exploring the whole building at large scales using the local analysis.

Strongly inspired by Vincent Lafforgue, who introduced these two ingredients for $SL_3(F)$. In that case, the ingredients become

- Harmonic analysis in the maximal compact subgroup *K*.
- Exploration of the whole symmetric space *G*/*K* using distorted copies of *K*, exploit hyperbolicity transverse to the flats.

Difficulty : there is no locally compact group, typically vertex stabilizers in Aut(X) are trivial!

A finite-volume geometric object : biaffine Hemlslev planes

Classical object : an affine plane = a projective plane without a line and all points incident to it.

We introduce : a biaffine place = a projective plane without an incident pair (p, ℓ) and all lines/points adjacent to them.

A biaffine Hemlslev plane = a similar object but on the ℓ_1 spheres in *X*.

16

Averaging operators on biaffine Hemlslev planes

If p, ℓ is a point at distance n from the origin in a biaffine Hemslev plane, we define

 $(p, \ell)_o = \max\{s \mid (op_s \ell_s) \text{ is a regular triangle}\}.$

Averaging operator : $T_s f(p) = \mathbb{E}[f(\ell) \mid (p, \ell)_o = s]$.

Main result $||T_s - T_{s+1}||_{L^2 \rightarrow L^2} \leq Cq^{-\frac{s}{2}}$.

17