The Beautiful Mathematices Involved in the Stroly of Dispersine Equations

Giglio la Staffilami
Open Colopcim
June 20-22
Miunster
MIT 2019

What do these pictures hove in Commun?

Tools come from many areas
The extruowhinocy recut progress in dispersive equations has involved:

* Harmonic and Fourier Andysis
* Analytic Number Theory
* Math Physics
* Dynamical systems
* Symplectic Geometry
* Probability

A case study: the nomlineer Schrödinger equation

$$
\text { (NLS) } \begin{cases}i \nu_{+} \mu+\Delta u=\lambda|u|^{2} u & \lambda= \pm 1 \\ \mu(0, x)=\mu_{0}(x) & x=\pi^{d}\end{cases}
$$

This is the periodic NCS initiol volue froblem.

$$
\begin{aligned}
& \text { Mass }=\int_{\pi^{d}}|u(x, x)|^{2} d x \\
& \text { Homi ltomion }=\int_{\pi^{d}} \frac{1}{2}|D u(x, x)|^{2}+\frac{\lambda}{4} \int_{\pi^{d}}|\mu(x, x)|^{4} d x
\end{aligned}
$$

thex integnols are conserveal!

Where olen the NCS come from?

What is Bose-Einstein condensation (BEC)?

High
 Temperature T:

thermal velocity v density d^{-3} "Billiard balls"

Low
Temperature T:
De Broglie wavelength
$\lambda_{\mathrm{dB}}=\mathrm{h} / \mathrm{mv} \propto \mathrm{T}^{-1 / 2}$
"Wave packets"

T=T crit:
Bose-Einstein

Condensation

$\lambda_{\mathrm{dB}} \approx \mathrm{d}$
"Matter wave overlap"

$$
\begin{gathered}
\text { T=0: } \\
\text { Pure Bose } \\
\text { condensate } \\
\text { "Giant matter wave" }
\end{gathered}
$$

Mathimotically:

"Wave peckets"

"giout matter
uove"
the BBGKY nierachy \qquad
take limit as $N \rightarrow \infty$
The Gross-Pietarvsteii hievady

More Mathematics
If $x_{k}=\left(x_{1}, \ldots x_{k}\right) \quad x_{i} \in \mathbb{R}^{d}, \pi^{d}$

$$
\gamma_{0}^{(n)}\left(\underline{x_{k}}, \underline{x_{k}^{\prime}}\right)=\prod_{j=1}^{k} \mu_{0}\left(x_{j}\right) \overline{\mu_{0}\left(x_{j}^{\prime}\right)} \quad\binom{\text { initid dote }}{\text { of } G-P}
$$

then

$$
\gamma^{(k)}\left(t, \underline{x}_{k}, \underline{x}_{k}^{\prime}\right)=\prod_{j=1}^{k} \mu\left(t, x_{j}\right) \overline{\mu\left(t, x_{j}^{\prime}\right)}\binom{\text { Solutiento }}{G-P}
$$

where

$$
(N L S)\left\{\begin{array}{l}
i{ }^{0}+u+\Delta u=|u|^{2} u \\
\mu(0, x)=u_{0}(x)
\end{array}\right.
$$

Spohm
Erdös-Schlein-You
Kirkpatrick - Schleim - S.
T. Chen-Paulovic x. Chen - Holmer

Example of on integrable system
$i D_{t} \mu+\partial_{x}^{2} u= \pm|\mu|^{2} \mu$
in \mathbb{R}, π
is on integrable system
Lax Pairs, Inverse Scattering, infinitely many conservation

$$
I_{s}(u)=\int \frac{1}{2}\left|D^{s} u\right|^{2} d x+l \cdot 0 . t
$$

Gross - Pietaevsk ii Hierarchy in \mathbb{R}, Π also admits infinitely many Conserved quantities

Mendulson-Mehmod - Pavlovic - S
Note: We expect even moue structure.

Homiltomion Structure and Poisson Commuting Energies

Sou th G.P be resized os a Hoviltovion equation of motion. with ti GP on
some Poisson manifold?
In $1 D$ downs the cubic G.P possess on integrable structure in the sense that $\exists\left\{H_{n}\right\}_{n \in \mathbb{N}}$ that Poisson Comutes and that contains $t_{G P}$?

Con the Poisson stunclure and Homilbion Hop be de rived in a suitable senseform on oudogous stunctize of the N-portide. level?

If $\left\{H_{n}\right\}_{n \in \mathbb{N}}$ exists does each of the An genuote a Homiltomion equation of motion related to the Knoum
$n^{\text {th }}$ - Schrodinger equation?
the onsuezs are yes for oll the piestions abore!
(D. Mendelson, A. Mohmoal, N. Parlovic, M. Dosenzweig)

Well-Poseolnuss

$$
\left\{\begin{array}{l}
i \eta+u+\Delta u= \pm|u|^{2} u \\
u(0, x)=u_{0}(x)
\end{array} \Longrightarrow\right.
$$

Solution to Coucly problem

$$
\begin{aligned}
& \mu(t, x)=S(t) \mu_{0}(x) \pm \int_{0}^{t} S\left(t-t^{\prime}\right)|\mu|^{2} \mu\left(t^{\prime}\right) d t \\
& S(t) \mu_{0}(x)=\text { solution to limeor } \\
& \text { Schrödinger: } \\
& \left\{\begin{array}{l}
i \eta_{t} v+\Delta v=0 \\
v(0, x)=w_{0}(x)
\end{array}\right.
\end{aligned}
$$

Perioolic Strichartz Estimutios
We need a good Banach spou for a fixed point ar gerent. the Strichartz Estimates on $S(t) \mu_{0}(x)$ help:

Cone: $d=2, q=4$ $S(t) \mu_{0}(x)=\sum_{n \in \mathbb{Z}^{2}} \hat{u}_{0}(n) e^{i t\left(\alpha_{1} n_{1}^{2}+\alpha_{2} n_{2}^{2}\right)} e^{i n \cdot x}$

- $\alpha_{1} / \alpha_{2} \in \mathbb{R} \Leftrightarrow \pi^{2}$ rational torus
- $\alpha_{1} / \alpha_{2} \notin Q \Leftrightarrow \pi^{2}$ irrational torus.

Strichartz Estimates on rational tori
If π^{2} is ration torus then
Bourgain go's

$$
\left\|S(t) \mu_{0}\right\|_{L_{\pi \times \pi^{2}}^{4}} \leq C\left\|\mu_{0}\right\|_{H^{\varepsilon}\left(\pi^{2}\right)}
$$

$\varepsilon>0$

Ingredients:
a) π^{2} rational $\Rightarrow S(t) \mu_{0}(x)$ is also periodic in time. For erengle tolu $\alpha_{1}, \alpha_{2} \in \mathbb{N}$

$$
S(t) \mu_{0}(x)=\sum_{n \in \mathbb{Z}^{2}} \hat{\mu}_{0}(n) e^{i t\left(\alpha_{1} n_{1}^{2}+\alpha_{2} n_{2}^{2}\right)+i n \cdot x} e^{\longrightarrow \text { time periodicity }}
$$

b) If π^{2} is ration one con count the set

$$
\left\{n \in \mathbb{C}^{2} / \alpha_{1} n_{1}^{2}+\alpha_{2} n_{2}^{2}=R^{2}\right\}=\sum \quad \alpha_{1}, \alpha_{2}, R \in \mathbb{N}
$$

y_{n} fact

$$
|\Sigma| \approx \exp c \frac{\log R}{\log \log R} \ll R^{\varepsilon}
$$

(Gauss lemme)
Andy tic Number theory \Rightarrow Hormanic Andysis

Strichartz Estimates on ace Torrens

$$
\left\|s(t) \mu_{0}\right\|_{L_{[0,1]}^{4} L_{\pi^{\varepsilon}}^{4} \leq c\left\|u_{0}\right\|_{H^{\varepsilon}} \quad \varepsilon>0}
$$

Bourgain - Demeter $1 / 4$

Surprisingly ANT was not part of the proof. Itisin fact consequence of the
l^{2} Decoupling Theorem
this theorem had been a major conjecture in HA. It is related to the Fourier Restriction theorem ocd the Kakeye problem.

Improve ments ond conseprences

* A bilinceer Strichartz estimate wos proved by
C. Fan - S- H. Keng - B. Kilsen
* Longer time Strichartz estimotes uen proved by Y. Deng - P. Germain - C. Guth.
* Shap Decoupling for cuves \Rightarrow Vinogrador Hean Volue theoren J. Bourgoin-C. Demeter - L. Geeth

Harmanic Anolysis \Rightarrow Anoly tic Number Theony

Global vell-posedmess and properties
Non using Strichoutz estimates and a fixed point aggenent one con claim that the Candy problem:

$$
\left\{\begin{array}{l}
i D_{t} u+\Delta u=\lambda|u|^{2} u \\
\left.u\right|_{t=0}=u_{0}(x) \quad x \in \pi^{2}
\end{array}\right.
$$

is locally uell-posed in $H^{s}\left(\Pi^{2}\right), s>0$. If $\lambda=1$ (defocurning) then enngyy conservation \Rightarrow global vell-posednen for $s \geqslant 1$.
Question: Can we learn more about the behaviour of the solution $\mu(t, x)$ as $t \rightarrow \infty$?
$t=0$
Transfer of energy

Question : 1) Does the support of $|\hat{\mu}(t, \xi)|$ move to high fupenencie?? (Keek turbulence, forward Cescede)
2) If such a "migration" happens, is it dome in a incoherent hopping way or mon like a Wavelike transport?

What we cam say mothemolicolg
One possible may to investigote 1) is looking ot

$$
\left.\left|\int\right| \hat{\mu}(t, \xi)\right|^{2}(1+|\xi|)^{2 s} d \xi=:\|\mu(t)\|_{H^{s}}^{2}
$$

and checking

$$
\lim _{t \rightarrow \infty}\|\mu(t)\|_{H^{s}}
$$

this is the problem of Grout of Soboleve Nouns. By iteration of local estimates $\Rightarrow\|\mu(t)\|_{H^{s}} \leq c_{1} e^{c_{c}|t|}$. can one do better?

Groceth of Sobolew Norms
Fact 1: Complete integrebility mey prevent the groceth of Soboler noms (1D cubic NLS, KdV)
Fact 2: Scottering prevents the grouth of Sobolen nouns: (Defonning Cutric NCS in \mathbb{R}^{2}. If $\mu(t, x)$ is solution in $H^{s}\left(\mathbb{R}^{2}\right)$ then $\exists u^{+} c=H^{s}\left(\mathbb{R}^{2}\right)$ s.t.

$$
s \geqslant 0 \quad\left\|S(t) u^{+}-\mu\right\|_{H^{s}} \xrightarrow{t \rightarrow+\infty} 0 \text { (Doolson 16) }
$$

As a consepeunce for $t \gg 1 \longrightarrow S(t)$ is unitany!

$$
\|u(t)\|_{H^{s}} \leq\left\|S(t) \mu^{+}-\mu\right\|_{H^{s}}+\left\|S(t) \mu^{+}\right\|_{H^{s}} \leq \varepsilon+\left\|\mu^{+}\right\|_{H^{\varepsilon}} .
$$

Some bounds frour above
Assume $\mu(t, x)$ is the globd smooth solertion to
(Bourgoin, Sohinger)
Fact 2: Cansioler the NLS uith honlineority $|\mu|^{p-1} \mu$, $3<p<5$ in genmic Tori π^{3}. Then an hos For rationd π^{3} is would not be here!

$$
\|\mu(t)\|_{H^{2}\left(\pi^{3}\right)} \leqslant C(1+|t|) \frac{2}{5-p+\theta(p)}
$$

$$
\theta(p)=\frac{\min (p-3,5-p)}{182}
$$

(Y. Denog - P. Germein)

Are there solutions that grace?
Fact 3: Fix $s>1,0<\delta \ll 1, k \gg 1$, then fortes cultic, olefouning NLS in π^{2} rational, f on initial alate $\mu_{0} \in H^{s}$ and a time $T \gg 1$ sit.

$$
\begin{aligned}
& \text { nd a time } T \gg 1 \text { sit. } \\
& \left\|\mu_{0}\right\|_{H^{s}}<\delta \text { and }\|\mu(T)\|_{H^{s}}>K\left(\begin{array}{c}
\text { Celienden- } \\
\text { Keel-s } \\
\text { taknoke-Teo }
\end{array}\right)
\end{aligned}
$$

Fact 4: For π^{2} rational

arbitrouly large modes exists.
(Corle-Faou)

Some ioleas of the proof of of Facts
this is a construcline proof. Assume π^{2} is spue. look for a solution

$$
\begin{gathered}
\mu(t, x)=\sum_{n \in \mathbb{R}^{2}} a_{n}(t) e^{i\left(t|n|^{2}+x \cdot n\right)} \quad \Longleftrightarrow \\
-i \eta_{t} a_{n}=-\left|a_{n}\right|^{2} a_{n}+\sum_{n_{1}, n_{2}, n_{3} \in \Gamma(n)} a_{n} \bar{a}_{n_{2}} a_{n_{3}} e^{i \omega_{4} t}
\end{gathered} n \in \mathbb{Z}^{2}
$$

where

$$
\begin{aligned}
& w_{4}=\left|n_{1}\right|^{2}-\left|n_{2}\right|^{2}+\left|n_{3}\right|^{2}-\left|n^{2}\right|^{2} \\
& \rho(n)=\left\{\left(n_{1}, n_{2}, n_{3}\right) / n_{1}-n_{2}+n_{3}=n\right.
\end{aligned}
$$

this is a HUGE system!

Toy Hole

$$
\left\{\begin{array}{l}
-i \dot{b}_{j}=-\left|b_{j}\right|^{2} b_{j}+2 b_{j-1}^{2} \bar{b}_{j}+2 b_{j+1}^{2} \bar{b}_{j} \quad J=1, \ldots, N \\
b_{1}(+)=b_{N}(+)=0 \leadsto \text { bounday dote } \\
b_{j}(0)=\tilde{b}_{j} \leadsto \text { initial date }
\end{array}\right.
$$

Demon: Although this is not the origin system, one con prove that its solution approximate well the one of the orifind NLS system.

The dymannics
Consunation of mon \Rightarrow is when the olynonics happens

$$
\mathcal{L}=\left\{x \in \mathbb{C}^{N} /|x|^{2}=1\right\}
$$

on \sum_{1}^{\prime} there on $\zeta_{J}, j=1, \ldots, M$, great circles that ore invariant.

The heart of the matter
Theorem:

(lou fervency)

$$
t t=T_{3}
$$

See also a more Dynamical System approach foin
Guadie-Kaloshim, Hous-Procesi

Some Remartes

* He do not knou what hoppens after time T.
* In the uoch of Corles- Frou the proudure is different but the some set 1 of fuprencies is used.
Question: What loopens when π^{2} is irretional?
Ansuer: In collabordion uith B. Uilson ke proved that the dynomics exploited by C-K-S-T-T and C-F comnot hoppen.

Set \triangle in the ration core:

Diamonds are not cloned in the resonant set of irrational tori'!
Set Λ in the irretiond cox
the NCS as ∞ dim Hemiltomien System

$$
\left\{\begin{array} { l }
{ i \eta _ { + } u + \Delta u = | u | ^ { 2 } u } \\
{ \mu / t = 0 = u _ { 0 } } \\
{ x \in \pi ^ { d } }
\end{array} \Longleftrightarrow \underline { \hat { \mu } (t , n) = a _ { n } (t) + i b _ { n } (t) } \left\{\begin{array}{l}
\dot{a}_{n}=\frac{\partial H}{\partial b_{n}} \\
\dot{b}_{n}=-\frac{\partial H}{\partial a_{n}} \\
n \in \mathbb{Z}^{d}
\end{array}\right.\right.
$$

Question: Are theorems for a finite ohm Honviltonion system true for en infinite dim one?

Answer: It depends on the theomen.

The non squeezing theorem
theorem (Gromor) Assume $\Phi(+)$ is on Hamiltomion flow in $\mathbb{R}^{2 d}$ which is also a symplectomorpluism. Let B_{r} bee boll of radius r in $\mathbb{R}^{2 d}$ and C_{R} be a cyl limiter of radices R in $\mathbb{R}^{2 d}$. Then if $\Phi(t)\left(B_{r}\right) \subseteq C_{R} \Rightarrow r \leq R$

Is a mon-spucezing tree for ohim $=\infty$ flous?

* True if $\overline{(}(+)$ is a compoct pesturbotion of a lineor flow (Kuksin).
ot True for the cutsic defoursing NCS in π (Bourgoin) (Here $L^{2}(\pi)$ is the symplectic space)
* True for $K d V$ in $H^{-\frac{1}{2}}(\pi)$ (Colliander-Keel-S-Takak-Teo)
to Partial results for Klein-Gordon almost sure flow in $H^{\frac{1}{2}} \times H^{-\frac{1}{2}}\left(\Pi^{3}\right)$ (Mendelson)
ot True for curbic, olefocuring NLS in $L^{2}\left(\mathbb{R}^{2}\right)$ (Killip-Visan-zhay)
thank you!

