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The 2d Honeycomb Hubbard model

» The honeycomb lattice A = A* U AB is the superpositiog of
the triangular lattice A2 (White dots) with /_\)B =N +6;
(Black dots): &, = (1,0), 62 = 2(—1,V/3), 63 = 3(—1,—V/3).



The states of the system.

» Let Ay = A/LA, L € N. The one-particle Hilbert space
Hi = {¥xar: A x {A B} x {1,1} = C } such that
||1/]”% = ZX,T,a W}X,a,r = 1.
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The states of the system.

» Let Ay = A/LA, L € N. The one-particle Hilbert space
Hi = {¥xar: Ao x {A B} x {1,1} = C } such that

1113 = s ra [xar? = 1.

» The Fermionic Fock space F; over H;:

412 N
F=Co@r", FY=An.
N=1

» For any 1) € H,, we can define the Fermionic operators a* (1))
(while dots) and b*(v) (black dots) satisfying the CAR:
{at(¥),a (@)} = a"(¥)a (¢)+a (d)a’ ()
= <1/)7 ¢>HL
{a*(¥),a"(¢)} = 0={a"(¢),a (¢)}



The Fermionic operators

» The operators a*(¢) (while dots) and b*(¢)) (black dots)
acting on Fi, (£ = (x,7)) by:

(a ()W) (&, - L&)
N1 / ded (€)M, &, En)



The Fermionic operators

» The operators a*(¢) (while dots) and b*(¢)) (black dots)
acting on Fi, (£ = (x,7)) by:
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The Fermionic operators

» The operators a*(¢) (while dots) and b*(¢)) (black dots)
acting on Fi, (£ = (x,7)) by:

(" (v)v )(N)(&, ,¢én)

N

Z w(gj N 1)(517"' 7£j—17§j+17”'£N)7

(a (1/)) )( V(1,1 En)
_JNT1 / deB(E) PN, &, -+, En)

> The fermionic fields aét: at(w) = [¥(€&)afd
= [P(&)ag d¢
> The CAR for {af, }: {45 1} = buxrr)
{ay .. a5 .} =0 {a,,a a, .} = 0. The same for bi..

X, 79 Ix! !



The Hubbard model on the honeycomb lattice

The grand-canonical Hamiltonian is:

Hn, = —t > > (ab; +b o a)

xEAa T=1L
i=1,2,3
_ bt b
D39 ( r x+6,,rbx+5,,r>
xEAL T—11
+ o ot o
A (ahaa ag + bbbl b))
xENs

» t € RT, the hopping parameter, A € R, the coupling
constant, u € R is the chemical potential.
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The Hubbard model on the honeycomb lattice

The grand-canonical Hamiltonian is:

Hn, = —t > > (ab; +b o a)

xEAa T=1L
i=1,2,3
_ bt b
D39 ( r x+6,,rbx+5,,r>
xEAL T—11
+ o ot o
A (ahaa ag + bbbl b))
xENs

» t € R", the hopping parameter, A € R, the coupling
constant, 1 € R is the chemical potential.

» x, coordinates of the sites, 7 =71 are the spins.

» When A = 0, any fermion is only hopping to its nearest
neighbor. When X\ > 0, all fermions are correlated through the
interaction term.



(Imaginary)-Time evolution and the correlation functions

_ ot oE +
> Let a, 1 a;, a,, = by, Define the imaginary-time
o _
evolution: a;, = e/  af Hi, x°

XC!e !

X_(X X)EABL —[ 56)X/\L ,3—1/7_



(Imaginary)-Time evolution and the correlation functions

> Let a, 1 = af, afz = b;. Define the imaginary-time

0 _ 0
evolution: ai, = e af e e,

X_(X X)E/\&L—[BB)X/\L, :1/T
» The Gibbs state associated with the Hamiltonian Hy, is:
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> Let a, 1 = af, af2 = b;. Define the imaginary-time
%0 _ 0
evolution: a“—L — el qE e Hn X"

X,
X_(X X)E/\&L—[BB)X/\L, :1/T
» The Gibbs state associated with the Hamiltonian Hj, is:
()="Ter, [- e ™)/ Zsp,, Zop, = Trpe "M
> Interesting quantities are:
» The 2p-point Schwinger's function p > 0 (2p-th moments of
the Gibbs states) for L — oc:
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(Imaginary)-Time evolution and the correlation functions

> Let a, 1 = af, af2 = b;. Define the imaginary-time
%0 _ 0
evolution: ai — el qE e Hn X"

X,
X_(X X)E/\@L—[BB)X/\L, :1/T
» The Gibbs state associated with the Hamiltonian Hj, is:
()=Trr [-eP])/Zgp,, Zogp, = Trre i,
> Interesting quantities are:
» The 2p-point Schwinger's function p > 0 (2p-th moments of
the Gibbs states) for L — oc:
[52,ﬁ(X17X27 )‘)]041,042 = IimLHOO<Ta)8<i,a1,na)8<§,a2,rz>5,l-
(y =Trg, [- e PHn]/Z5 p,, T is the time-ordering operator.
> The connected Schwinger's function S5 5(x1, x2, )
"cummulants of the Gibbs state” and the self-energy
22,‘5(X1,X2; )\)



The noninteracting two-point Schwinger function (A = 0)

> C(x1,x2,0,1) = [ dkodkC(ko,k,0)ekba—x),
ko= (2n+1)7T, n € Zso, k = (ki, k) € B = R?/A*,
N = {k € R?, (x,k) € 217, ¥ x € A}.
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The noninteracting two-point Schwinger function (A = 0)

> C(x1,x2,0,1) = [ dkodkC(ko,k,0)ekba—x),
ko= (2n+1)7T, n € Zso, k= (ki, k) € B = R?/A*,
N = {k € R?, (x,k) € 2nZ, ¥ x € A}.

A 1 iko+p —Q*(k)
C(ko, k,0) = '
(Ko, k,0) k3 + (k)2 — 2 — 2ipko ( Q(k) ko +p

Qk) =1+ 2e~i3k cos(?kz)

> It is well defined for T > 0 (ko > 0).

» For T — 0, 5, 5(ko, k,0) is singular on the set:
Fo ={k € B,|Q(k)| — . = 0}, called the Fermi surface.



The Fermi surfaces

» When p =0, Fo = {kf = (Z, +37% 2m )} is a pair of points.



The Fermi surfaces

> When =0, Fo = {kE = = 1375 2m )} is a pair of points.

> When =1, Fo = {(ki, k2), ko = (2”}1) neZ
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The Fermi surfaces

> When =0, Fo = {kE = = W 2m )} is a pair of points.

> When p =1, Fo = {(ku, ko), ko = (2”}1) nel}
U{(k1, ka), ko = +/3ki F 4%277, ne7Z}.
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» For 0 < u <1, Fp is a set of convex curves surrounding kjFE.

ki
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The interacting theory A # 0

The fundamental questions are:

. Zg.a, (A)
> Is lim; o Z /\i(O)

quantity? Or can we rigorously define this model?

or limy_,o. log Zg p, () a well-defined

» The analytic properties of the (connected)-Schwinger
functions?
> Is the ground state of this model a Fermi liquid?



The Fermi liquid

Definition (Fermi liquid, Salmhofer, 1998)

Let Sfﬁ(k, A) be the Fourier transform of S5 5(x1, X2, A). The
ground state of an interacting many-fermion system is said to be a
Fermi liquid in the equilibrium (at 8 =1/T) if
» S, 5(k, \) is an analytic function of the coupling constant \
for f < oc.



The Fermi liquid

Definition (Fermi liquid, Salmhofer, 1998)
Let gzcﬁ(k, A) be the Fourier transform of S5 5(x1, X2, A). The
ground state of an interacting many-fermion system is said to be a
Fermi liquid in the equilibrium (at 8 =1/T) if
» 55.3(k, \) is an analytic function of the coupling constant A
for B < 0.
» The Fourier transform of the self-energy function, i(k, A B),
is C2in k for B — oco.



Examples of Fermi liquids and non-Fermi liquids

» Jellium model: FL for T > T, (Disertori, Rivasseau 2000)

» Fermic model in the continuum with central symmetric Fermi
surfaces: FL for T > T.. (Benfatto, Giuliani, Mastropietro
2003)

» Many-fermion model with asymmetric Fermi surfaces: FL for
T — 0: (Feldman, Knérrer, Trubowitz 2004)

» Hubbard model on the square lattice at half-filling: Non-fermi
liquid for T > T, (Afchain, Magnen, Rivasseau 2005)

» Hubbard model on the square lattice far from half-filling: FL
for T > T, (Benfatto, Giuliani, Mastropietro 2006)
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The Honeycomb Hubbard model with =0, A # 0.
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» Theorem (Giuliani, Mastropietro, 2010)

There exists a positive constant U such that the "pressure

function” log Z /XES; and the connected Schwinger function

S5 s(x1, X2, A) are both analytic functions of X when 8 — oo, for
Al < U.




The Honeycomb Hubbard model with p =1, A #0

Theorem (Rivasseau, ZW 2021)

» There exists a positive constants 3. = 1/ T, such that for any
B < Be, the "pressure function” log Zj\\ga\)) and the connected

two-point function S5 5()) are analytic functions of the
coupling constant X, in the region

Alog? 8| < 1. (1)



The Honeycomb Hubbard model with =1, A #0

Theorem (Rivasseau, ZW 2021)

» There exists a positive constants 3. = 1/ T, such that for any

”” . ” Z s ()\)
B < B¢, the "pressure function” log fo ;\\(0) and the connected

two-point function S5 5()) are analytic functions of the
coupling constant X, in the region

Alog? 8] < 1. (1)

» Fix A\, with |\| < 1, the transition temperature is
C

__GQ
T. = Cie M2, Ci, G > 0 are two strictly positive
constants.



The Honeycomb Hubbard model with =1, A #0

Theorem (Rivasseau, ZW 2021)

» There exists a positive constants 3. = 1/ T, such that for any

”” . ” Z s ()\)
B < B¢, the "pressure function” log ZZC\\(O) and the connected

two-point function S5 5()) are analytic functions of the
coupling constant X, in the region

A log? B < 1. (1)
» Fix A\, with |\| < 1, the transition temperature is
__S9
T. = Cie M2, Ci, G > 0 are two strictly positive

constants.

» The self-energy function i(k, \) is CY*€ differentiable w.r.t.
the momentum for T — 0. The ground state is not a Fermi
liquid.



Proof-The Grassmann algebra and Berezin Integrals

» The Grassmann algebra Gra is an associative,
non-commutative, nilpetent algebra generated by the
Grassmann variables {wi,a}' e==4, a=12,
k= (ko,k) € Dy = {%(n+3),ne N} x D, D, = R?/A;
such that @ia Ail,7a, = —zﬁii7a,zﬁi7a and (Ai,a)2 =0.



Proof-The Grassmann algebra and Berezin Integrals

» The Grassmann algebra Gra is an associative,
non-commutative, nilpotent algebra generated by the
Grassmann variables {@Z)iya}, e==4,a=12,

2
k= (ko,k) € Dg1 = {3 (n+3),n € N} x D, Dy = R*/A;
~ ~t Nt ~ ~
such that ¢ ¥ v = =Y ¥k, and ( i,a)2 =0.

» The Grassmann differentiation and integrals are defined as:
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Proof-The Grassmann algebra and Berezin Integrals

» The Grassmann algebra Gra is an associative,
non-commutative, nilpotent algebra generated by the
Grassmann variables {1} .}, e =+, a =1,2,

k= (ko,k) € Dgr = {3 (n+3),ne N} x D, D, = R?/A;
such that ¢ ¥ v = =Y ¥k, and ( i,a)z =0.

» The Grassmann differentiation and integrals are defined as:
%i’aiﬁi/,ar = 6k,k/5a,a’5a,a’y f@bi,ad@bi/,a/ = 5k,k’5a,o¢’ e,e!

» A model of Gra is the exterior algebra (dx, A)



The Berezin Integrals

The Grassmann Gaussian measure P(d1) with covariance C(k):

P(dv) = N"2Di- exp {—1 >, YilC (k)ll/A’k_,m}

IB|AL| k:(k(J’k)eDﬁ,LaT)a

- L (ko —1 —Q*(k)
where N = [Tyep, -1y 37877 < —Q(k) —ik—1)"

Lli—>moo/ P(dw)zzl;,n,a1¢/\/—g,7’2,a2 = 5k1’k257—1772[6(k1)]a1’a2'



The Berezin integrals

. + 1 +ikx, £
» Define ¢x,r,a = BIA Zkepm et! X@Z;k,ﬂa,
x € Ng.p =[-8, 8) x AL



The Berezin integrals

: +  _ _1 +ikx, £
> Define ¢, = BIAL ZkeDm et
x € Ng,p:=[=5,8) x AL,
» the interacting potential becomes:

3 + -
V(w //\ d°x wx That x T,o/wx,i,awx,i,a/ ’
B,L
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The Berezin integrals

. + 1 +ikx, £
> Define ¢, = BIA Zkepm e X@Z’k,r,a'
x €N = 1[=B,8) X A,

> the interacting potential becomes:

3 + -
=2 ) / XUt alrra it

a,a’=1,2 Ag,L

» The normalized Grassmann measure ZiLP(dw)e_V(¢),
2= [ P(d)e™V)



The Berezin integrals

: +  _ _1 +ikx Nt
» Define 17Z)X7T,O¢ = m ZkE'Dﬁ,L e d}k,T,a’
x €N = 1[=B,8) X A,
> the interacting potential becomes:

V(¢ //\ d3X wx T XT,a’wZL,abe_,i,a/ ,
a,a’=1,2 B,L
» The normalized Grassmann measure =- (d¢) V(zb)y
Z = [ P(dy)e

» The Schwinger functions:

5n7ﬁ(X1,-.~, = lim / (/}Xl - ap Xn‘rn,an *)\V(z/) (dw)

L—oo Z



Generating functionals

» Let j7,j~ be two Grassmann variables. Define: Z(j*,j7,\) =
fe—AV(w)Jrfdxw*(x)J )t [ ()Y () P(dep). and

W(j*,\) = log Z(j*, \), the cumulant generating functional.



Generating functionals

» Let jT,j~ be two Grassmann variables. Define: Z(j*,j7,\) =
f e—/\V(w)-i-f dxzb*(x)j*(x)—&——i—fdxj*(x)zb*(x)’p(dw)_ and

W(j*,\) = log Z(j*, \), the cumulant generating functional.
» The connected 2p-point Schwinger’s functions:

p 2

0
S (X1, Xp, Y1, :”%Wdﬂ'* it —
b o) = U ey Y e



Generating functionals

» Let jT,j~ be two Grassmann variables. Define: Z(j*,j7,\) =
f e—)\V(Qp)-i-f dx’gb*(x)j*(x)—&——l—fdijr(x)zb*(x)P(dw). and
W(j*,\) = log Z(j*, \), the cumulant generating functional.

» The connected 2p-point Schwinger’s functions:

P 2

1)
SC X,"',X, e, — —W +7,ji o
2p( 1 ps Y1 yp) I-|:|1 (5_j+(Xi)5j_(y,‘) (J )’_/ 0

> Define ¢ (x) = 72 W), ¢ (x) = 57555 W (), define

M(¢7,¢7,A) =
WG, 57 A) = [ Px ()67 (x) + & F ()i~ (%))




Generating functionals

» Let jT,j~ be two Grassmann variables. Define: Z(j*,j7,\) =
f e—)\V(Qp)-i-f dx’z/)*(x)j*(x)—&——l—fdijr(x)zb*(x)P(dw). and

W(j*,\) = log Z(j*, ), the cumulant generating functional.
» The connected 2p-point Schwinger’s functions:

52
SC X,"',X, e, — —W "‘F"* o
2p( 1 ps Y1 yp) i|:|1 5_/+(Xi)5,/_(}/i) (J J )’_/ 0

» Define ¢ (x) = 61.,5()() W), ¢~ (x) = 6j+5(x W (j), define
M(¢*, 67,0 =
WG+, A) = [ & [T (x)o~ (x )+¢+( )i~ (x)]

» The self-energy X(x,y,\) = W F(oT, 0, A)|sz—o




The (naive) perturbation expansion

For |\| < 1, perform perturbation expansions:

3 [t =t
Z(A) = / P(di)e" Mo [t vivtivn]
=y P(0)| [ dx @i vi)]
N I'I' A X’T X;T XhL X,J, °
n=0 B
- Z E / d3X1 o d3x Xle1,m """ Xn,en,n
. n! (/\ﬁ,L)n n X17€177'1 . Xn,En,T,, )

{ : } is a 2n x 2n determinant, Cayley's notation:

{x,-,T } = det [6,[ C(xi — x)]], C(x — y) = C(k)e* =) g3x
X.ivT, /\,B,L
&) — 1 iko + 1 —Q*(k)
TR+ Q(K)[2 — 2 — 2ipko \ QUK)  iko+ p



Difficulties and solutions

» Q1: The perturbation series can be labeled by graphs, called
the Feynman graphs. Fully expansion of the determinant
generates the combinatorial factor (2n)!, which makes the
perturbation series divergent.



Difficulties and solutions

» Q1: The perturbation series can be labeled by graphs, called
the Feynman graphs. Fully expansion of the determinant
generates the combinatorial factor (2n)!, which makes the
perturbation series divergent.

» Solution: partially expand the determinant (fermionic cluster
expansions) so that only the terms corresponding to spanning
forests appear.
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» Let {7} be the set of spanning trees of G and w(G,T) be a
probability measure on {7}: > o w(G,T) = 1.
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The Fermionic cluster expansions for log Z
» Let {7} be the set of spanning trees of G and w(G,T) be a
probability measure on {T}: > o w(G,T) = 1.
» Organizing the perturbation terms as:

5=26Ac¢=2c27ccW(G T)Ac =7 AT,
AT => 657 w(G, T)Ag.
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The Fermionic cluster expansions for log Z

» Let {7} be the set of spanning trees of G and w(G,T) be a
probability measure on {T}: > o w(G,T) = 1.

» Organizing the perturbation terms as:
S=2646=26271cc (G T)Ac = 2.7 AT,
AT => 657 w(G, T)Ag.

w(G,T) = Hdeng ({w}).

0 veT g7

> Assign a parameter wy, V£ € T.

» Forany /€ G\ T, = (v,Vv'), assign the parameter x/ ({w}):
X[T({W}) = 0 if (v, v') is not connected, x; T({w}) = 1 if
v=v' X[T({W}) = infyep,(v,v){we} for other l.
(Rivasseau-ZW 14 for examples)



The Fermionic cluster expansions for log Z

» Let {7} be the set of spanning trees of G and w(G,T) be a
probability measure on {T}: > o w(G,T) = 1.

» Organizing the perturbation terms as:
S=2646=26271cc (G T)Ac = 2.7 AT,
AT => 657 w(G, T)Ag.

w(G,T) = Hdesz ({w}).

0 veT 0T

> Assign a parameter wy, V£ € T
» Forany £ € G\T, £ =(v,v'), assign the parameter x; T({w}):
X7 ({W}) = 0 if (v, v') is not connected, x; T({w}) = 1 if

v=v' xj T({w}) = infrep,(vvy{we} for other l.
(Rlvasseau ZW 14 for examples)

» The canonical way of defining the weights is the BKAR forest
formula (Brydges, Kennedy 87, Abdesselam Rivasseau 95).



Difficulties and solutions

» Q2: C(k) is singular for kg — 0, k € F. Typical term in the
perturbation series is [ dk - --[C(k)]P. But C(k) is locally L
but not LP, Vp > 2;



Difficulties and solutions

» Q2: C(k) is singular for ky — 0, k € F. Typical term in the
perturbation series is [ dk - --[C(k)]P. But C(k) is locally L!
but not LP, Vp > 2;

» Solution: The singularities are approached in multi-steps.



The multi-scale analysis

» Let GI'(R), h > 1, be the Gevrey class of compactly
supported functions. Define a cutoff function y € G#(R) as:

0, for |t| > 2,
(0,1), for 1<|t] <2, (2)
1, for |t] <1.
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The multi-scale analysis

» Let GJ(R), h > 1, be the Gevrey class of compactly
supported functions. Define a cutoff function y € G#(R) as:

=0, for |t| > 2,
x(t) =x(—t)=14€(0,1), for 1<|t] <2, (2)
=1, for |t] <1.

» Given fixed constant v > 10, construct a partition of unity

1 = ffXj(t)v Jmax = E(|Og“f %)’ (3)
=0
Xo(t) = 1- X(t)’

xj(t) = x(¥7't) — x(v¥t) for j > 1.



The multi-slice expansion

» The free propagator is decomposed as :

J max

/—Zc aats =12,

Ci(K)aor = é(k) - xj[4kS + (k)]
e(k )—8[cos(\f ko /2)] - [cos( (3k1+f ko))]

[cos( (3k1 — V3k2))].
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The sectors

» Not sufficient to obtain the optimal decaying of propagator.



The sectors

» Not sufficient to obtain the optimal decaying of propagator.

» We introduce a second partition of unity:

vo(t) =1 — x(7*t),
vs(t), vs(t) = xs+1(t), for 1<s<j—1, (4)

J
1=
=0 vi(t) = x(v¥1),



The sectors

» Not sufficient to obtain the optimal decaying of propagator.

» We introduce a second partition of unity:

j w(t) =1-x(7%t),
1= (), < vs(t) = s+1() for 1<s<j—1, (4)
=0 vi(t) = x(¥t),
6( ) z:a_(sa Sp) 61 U(k)v QU( ) = é\jj(k) ’ VSa[ta] Vsb[tb]v
a,be {1 2,3}, t1 = cos?(v/3kz/2),
t, = cos?(+(3k1 + V3ko)), t3 = cos?(%(3ki — V3k2)).



The sectors

» Not sufficient to obtain the optimal decaying of propagator.

» We introduce a second partition of unity:

; vo(t) = 1 - x(7?1).
1= w(t), {us(t) = enlt) | for 15s<jo1, (8
s=0 y(t) = x(¥1),

> Gk) = Xo—(ssp) Go(K), Gio(k) = Glk) - v, [ta] vy [85],
a,b e {1,2,3}, t; = cos?(v/3kz/2),
to = cos?(+(3k1 + V3ko)), t3 = cos?(%(3ki — V3k2)).

» Correspondingly, 1/JkTa = o—(s215) 1)2:7{0, and Qg(k) is the

covariance of wk =0



a diagonal secto

the Fermi triangle a general sector
a face sector,

the annulus A
a corner sector

a middle face sector

Figure: An illustration of the various sectors.

In each shell of scale j € [0, jmax], a sector is of size Y™ x 7y~ in
which 0 <'s;,sp <, sa+5sp > — 2.



The bounds for the propagators

G (x = ¥)]aar oo < O(1)y~ %7 e~ Lo bonl®e,

where 0 <'s,,s, < j, ap = 1/h, and
dio(x,y) =7 |x0 — Yol +77%[xa — yal + 77 |x6 — yb



The bounds for the propagators

G0 (x = ¥)laarllLee < O(1)y™=7 e el bl

where 0 < s5,s, < j, a9 = 1/h, and
djo(x,y) =7 |x0 — ol +77%[xa — yal + 7" |x6 — yb|

| 160 (e

.Ll < O(1)Y.



Theorem (The BKAR jungle Formula. Brydges, Kennedy 87,
Abdesselam Rivasseau 95)

Let In=A{1,---,n}, Pn={L=(i,)),i,j € In,i #j}, S a set of
smooth functions from R"" to some Banach space, 1 € R”" pe
the vector with every entry equals 1. Then for any

x = (x¢)eep, € R”" and f € S:

(1) Z(/ Hdwf)(H( I1 &)) FIXT (wo)l,

J leF k=1 (LeF\Fk-1

>j=(f0C.F1 - C F,

max

forests F; with n vertices.

= F) is any partially ordered set of

» X7 (wyp) is a vector with elements x; = XI?JZ_—(W@).‘

> x,-jf =1ifi=j, orifi andj are connected by Fj_;.
> x,-jf =0 if i and j are not connected by Fi,

> x,-jf = inf,cpr wy, if i and j are connected by the forest F) but
ij

not Fy_1, where P,.jfk is the unique path in the forest that
connects i and j,



The connected functions

> S55(A) =22, 55,A,

S5, = % S S]] / P 3(x0)

Azher T T i'=1

1 n
11 / e Cry o (30, %) [ | 1(0) detien (Gi(w)) -
0 i=1

LeT

> jI:(fonl"-C}—

Imax

= T) is called a jungle.
> Perturbation terms are organized into the Gallavotti-Nicolo
tree G". r=2(j+s; +s-). |kl~~".



X X X x

r-3
|
Ei X
|

X

x
|

XX
XX

Figure: r=2(j+s; +s_). |kl ~~7"




Difficulties and solutions

» Q3: The dispersion relation receives quantum corrections:
Q(K)2 = [Q(K) + $(Ko, k, A), 1 — 1+ 3u(A). The
interacting Fermi surface is

F = {k[ 1K) — 1 — 5u(3) — £(0.k,3) = 0}.



Difficulties and solutions

» Q3: The dispersion relation receives quantum corrections:
QK2 = [9(K)P + (Ko, k, A), 1 — 1+ 3u()). The
interacting Fermi surface is

F = {K 120 — i~ 5u(x) - £(0,k, ) = 0}.

» Solution: Fix the Fermi surface by counter-terms:

5H/\ = 6”()‘) Z Z Z 12::7',0(12;;,7',04

k€Dg a=1.27=1,]

+ Z Z ko’k)\wkTawkTa

keDg,7=1] a,a’=1,2



Difficulties and solutions

» Q3: The dispersion relation receives quantum corrections:
1Q(K)2 = |2(K)2 + (ko K, ), 1 — o+ 3a(A). The
interacting Fermi surface is

F = {K 120 — i~ 5u(x) - £(0,k, ) = 0}.

» Solution: Fix the Fermi surface by counter-terms:

SHA = (N D> Y D> i i

ke€Dg a=1271=1,]

+ Z Z k07k)\¢k‘rawk‘ra

ke€Dg, =T o,a'=1,2

» du(\) cancels the term du()).
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Difficulties and solutions

» Q3: The dispersion relation receives quantum corrections:
QK2 = [9(K)P + (Ko, k, A), 1 — 1+ 3u()). The
interacting Fermi surface is

F = {K 120 — i~ 5u(x) - £(0,k, ) = 0}.

» Solution: Fix the Fermi surface by counter-terms:

SHA = (N D> Y D> i i

ke€Dg a=1271=1,]

+ Z Z k07k)\¢k‘rawk‘ra

ke€Dg, =T o,a'=1,2

» &u(\) cancels the term du()).
D27 T, k, A) cancels (27 T, Pr(k), V)]

» The cancellations are carried in the multi-scale representation
using renormalization theory.



The renormalization of the two-point function

» The local term: du(y) = —[[ dz S5 (y, z)] will be canceled

by the counter-term at scale r: du" + ép" =0,



The renormalization of the two-point function

> The local term: du"(y) = —[[ dz S¢(y, z)] will be canceled
by the counter-term at scale r: du" + ou" =0,

» Renormalization of the non-local part:

igﬁsf (27T, Pe(k))s, s 057 A + 0%, 5 (PF(K)s, s, A) = 0.

The remainder terms bounded by ~ ="
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» Desired L' and L™ bounds for free propagators on sectors.
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» Desired L and L™ bounds for free propagators on sectors.
» Perform renormalization for the two-point functions.

» Using Gram-Hadammard inequality to bound the unexpanded
determinant: If M is a square matrix with elements
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» Desired L' and L™ bounds for free propagators on sectors.

» Perform renormalization for the two-point functions.

» Using Gram-Hadammard inequality to bound the unexpanded
determinant: If M is a square matrix with elements
M;; = (A;, B;), with A;, B; € L?, then
I det M| < IT; [|Aillc2 - [1Bill 2

» Summation over the sector indices using the Sector counting
lemma (Rivasseau 2004, ZW 2021);



The analyticity of S5(x, y, A)
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Desired L' and L bounds for free propagators on sectors.
Perform renormalization for the two-point functions.

Using Gram-Hadammard inequality to bound the unexpanded
determinant: If M is a square matrix with elements

M;; = (A;, B;), with A;, B; € L?, then

I det M| < IT; [|Aillc2 - [1Bill 2

Summation over the sector indices using the Sector counting
lemma (Rivasseau 2004, ZW 2021);

Bounds over spanning trees with n vertices )+ ~ nl;



The analyticity of S5(x, y, A)

» Desired L' and L™ bounds for free propagators on sectors.
» Perform renormalization for the two-point functions.

» Using Gram-Hadammard inequality to bound the unexpanded
determinant: If M is a square matrix with elements
M;; = (A;, B;), with A;, B; € L?, then
I det M| < IT; [|Aillc2 - [1Bill 2

» Summation over the sector indices using the Sector counting
lemma (Rivasseau 2004, ZW 2021);

» Bounds over spanning trees with n vertices )+ ~ nl;

» The perturbation series (not Taylor series) is convergent for
Aog? 8| < 1.



Upper and lower bounds for the self-energy >(y, z, A, )

» The perturbation series of X(y, z, A, 3) are labeled by
one-particle irreducible graphs (two-connected graphs)

» We partially expand the determinant det({C(f;, gj)})ser, 7, the

multi-arch expansion (liagonitzer, Magnen (~ 1994),
Disertori-Rivasseau 2000)

y X1 Xz z y X1 X2 z

» Establish the upper and lower bounds for the self-energy and
its derivatives.
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The Hubbard model on the square lattice

» Theorem (Benffatto, Giuliani, Mastropietro, 2007)

For 0 < u <1, the ground state is a Fermi liquid for T > T., with
T,_— = Ki exp(—%). Kl, C1 > 0.
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The Hubbard model on the square lattice

» Theorem (Benffatto, Giuliani, Mastropietro, 2007)

For 0 < < 1, the ground state is a Fermi liquid for T > T, with
T. = Klexp( W) Ky, C1 > 0.

» Theorem (Afchain, Magnen, Rivasseau, 2004)

For ;. = 2, the ground state is a not a Fermi liquid for T > T¢,
with T, = K> exp( Wl/z) Ky, G5 > 0.
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» Theorem (Benffatto, Giuliani, Mastropietro, 2007)

For 0 < u <1, the ground state is a Fermi liquid for T > T., with
TC = Ki exp(—%). Kl, C1 > 0.

» Theorem (Afchain, Magnen, Rivasseau, 2004)

For i = 2, the ground state is a not a Fermi liquid for T > T¢,
with T. = Ko exp(—wc—fﬂ). Ko, Co > 0.



The Hubbard model on the square lattice

» Theorem (Benffatto, Giuliani, Mastropietro, 2007)

For 0 < u <1, the ground state is a Fermi liquid for T > T., with
T. =K exp( W) Ky, C1 > 0.

» Theorem (Afchain, Magnen, Rivasseau, 2004)

For i = 2, the ground state is a not a Fermi liquid for T > T¢,
with T. = Ko exp(—wc—f/z). Ko, Co > 0.

» Theorem (ZW, 2022)

For =2 — pg, po < 1 fixed, the ground state is a not a Fermi
liquid for T > T, with |Alog?(uoT)| < Ks:

K3 3 >
Te= {#O exp(~ i), o 2 Te fixed, Ks, G3 > 0.

K4 eXp(*afﬁ), Mo — 0.
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Conclusions and perspectives

» We provide rigorous proof that the ground state of the
Honeycomb Hubbard model at ;=1 is not a Fermi liquid.

» Caseof O< <17

» Metal-Insulator transitions and many-body localization in
Hubbard model.
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