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Boundary CFTs and defects

(]

Critical O(N) models: thoroughly studied class of 3D CTFs
> € expansion, bootstrap, 1/N expansion

(]

Introduce boundaries or defects [Diehl, cond-mat/9610143]

o Interface: codimension 1 defect

o Boundary: codimension 1 defect where the extra dimension is
integrated only over half-space
o Extraordinary: break O(N) symmetry to O(N — 1)



Surface defects

o RG analysis and 1/N expansion: 3D extraordinary log universality
class [Metlitski 2009.05119]

o Recently: D dimensional bulk and defects of codimension D — 2
[Trepanier; Giombi, Liu; Raviv-Moshe, Zhong]
> Quadratic defects
— 4 — ¢ and 6 — € expansion
— Ordinary and extraordinary defects
— 1/N expansion: singular for D — 3
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RG analysis and 1/N expansion: 3D extraordinary log universality
class [Metlitski 2009.05119]

(]

Recently: D dimensional bulk and defects of codimension D — 2
[Trepanier; Giombi, Liu; Raviv-Moshe, Zhong]
> Quadratic defects
— 4 — ¢ and 6 — € expansion
— Ordinary and extraordinary defects
— 1/N expansion: singular for D — 3
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Here: 4 — € expansion with defects of codimension 1

(]

Cubic interactions on the defect are then marginal



Free vs interacting bulk

Schematically
S = /dd“x[iauqﬁ@“cb—k)\nqﬁ"} +/ddx/\p¢p

e UV dimension of the field Ay = %

o The defect interaction is then marginal for d. = #

olnd.+1= %, the operator ¢2(P~1) is marginal in the bulk



Free vs interacting bulk
Schematically
S — / dd+1x[%au¢a#¢+x,,¢"} + / dx\p P

e UV dimension of the field Ay = %

o The defect interaction is then marginal for d. = #
olnd.+1= %, the operator ¢2(P~1) is marginal in the bulk

Dimension d.  Bulk  Defect

3 n=4 p=3
2 n=6 p=4'
5/3 n=8 p=5

1 [Séderberg Rousu 2304.05786)



Outline

O Multi-scalar model

O Applications
o N=1
o O(N — 1) vector model
@ Symplectic fermions

© Boundary with cubic interactions



Model

)\(4)
Slg] = /dd+lx |:;8u¢aa'u¢a+ abed GadbPcdd

a1
4 / ddx[Aab" <z>a¢b¢c]

3!

o Indices take values from 1 to N/

° )‘gt)cd and A\,pc fully symmetric tensors

= In general (NI‘?’) and (N;r2) couplings respectively



Model

)\(4)
Slg] = /dd+lx |:;au¢aa'u¢a+ ab!Cd GadbPcdd

4
Aa C
+ [ x| .o

o Indices take values from 1 to A/
e )‘;(:;)Cd and A\,pc fully symmetric tensors

= In general (NI‘?’) and (N;r2) couplings respectively
o Non-trivial propagators on the interface



Propagator on the defect

Fourier transform the free propagator along the defect directions:

r(e=t eiP1x1+ip2:x2
(@1(P1, y1)B4(P2,¥2)) = o1y ( ;) /ddxl ddxzﬁ

A2 (2 + ) 2
e~ Ipllyi2|

B dsd
= (2m)0%(p1+p2) 61y oo



Propagator on the defect

Fourier transform the free propagator along the defect directions:

r(e=t eiP1x1+ip2:x2
(1(p1, y1)Ps(P2, ¥2)) = 1y ( d2+1) /ddxl C/dxz(1

ST EESY
am 2 Xty + y1p) 2
—Ip1lly12]
e
= (2m)?69 (p1+p2) O1y—m——
2’P1\

o Interface-to-bulk propagator: y; =0

e—Ipllyl

KIJ(PJ’) = Wfsu



Propagator on the defect

Fourier transform the free propagator along the defect directions:

r(e=t eiP1x1+ip2:x2
(1(p1, y1)Ps(P2, ¥2)) = 1y ( d2+1) /ddxl C/dxz(1

di1 d—1
am 2 X+ i) 2
—Ip1lly12]
e
= (2m)96% (p1+p2) Sy———
2|pa|
o Interface-to-bulk propagator: y; =0
Ku(p.y) e—|p||y|5
P, Y) = —7 79U
2|p|
o Interface propagator: y3 = y» =0
o1



Divergences and regularization

Power counting in d = 3:

@ Two-point graphs: power divergent
o Three-point graphs: log divergent

@ Wave function renormalization: not modified by the boundary
couplings — neglected at one-loop

Choice of scheme:

@ Dimensional regularization d =3 — ¢

@ BPHZ subtraction with symmetric external momenta



Three-point function: One loop contributions

Graph with only cubic couplings

R& TP
T

Graph with both cubic and quartic couplings



Bare expansion

_ 1 _
rg?l)))c = Aabc + AadeAbdfAcef 1T — > ()\gt)ef)\efc +2 terms) uw *B

o Why "+ 2 terms"? To conserve permutation symmetry

@ T: computed in momentum space with interface propagators
@ B: have to use a mixed representation

d9k 1\?
o = uf | ——— = —2(Ip|+Ik])yl
B=p (2w>d/Rdy (2rk\> °

o [ d% 1 2
4 ) @) [k[(Ip[+ [kl)  (4m)%e




Beta functions

Running coupling <+ dimensionless three-point function

— 3
8abc = [ S/Zngc

Beta functions: scale derivative of the running coupling

ﬁif,)c = 10, &abe



Beta functions

Running coupling <+ dimensionless three-point function

— 3
8abc = [ 6/2rgbc

Beta functions: scale derivative of the running coupling

ﬁa(,f,)c = 10, &abe

Method:
o Derive the bare expansion with respect to
o Invert the bare expansion to obtain the renormalized series

@ Substitute the bare coupling by its expression in terms of the
renormalized one



One-loop beta functions

o Beta function for the cubic couplings:

3 €. 1. . . (4 .
5§b)c = 7 58abc — 4 BadeBbdfbcef + (ngbifgefc + 2 terms)

d
where we rescaled the coupling as gape = (47)4 r(g)l/zgabc
@ Theory in the bulk not modified by the defect:
) — _ 5@ 5(4) =(4)
ﬁabcd = = €5bed (gabefgefcd +2 term5>

d+1
where we rescaled the coupling as ggsl = (47) 2 r(%)”gz



1 A A
— d+1,| = o 4 4 d "3 3
S—/d x[28M¢8¢+4!¢}+/dx3!¢
Only one cubic coupling:

Ba = —egs + 387
3

€ 83
— _ o 3
B3 = 28—, + 38483

Free bulk
o Stable purely imaginary fixed point

@ Similar to standard Yang-Lee model



Fixed points and CFT data

Usual Wilson-Fisher fixed point for the quartic coupling

(]

o Two non-trivial fixed points for the cubic coupling

g5 = +V2¢

(]

Negative critical exponent w = —e — unstable

Trivial fixed point is stable

(]

Dimension of quadratic operator

(]

A2:2_%+O(e)



O(N — 1) vector model

Slol = [ a#72x | 30,6100 01(x) + 3 (01|
+ / dx Dl On(x)da(x)9a(x) + ;quN}
where | summed from 1 to N while a summed from 1 to N — 1
= Symmetry broken to O(N — 1)
Beta functions obtained from the multi-scalar model by setting:
)\S;)cd _ (0ab0cd 4 dacObd + 0addbc)

3
Aabe = A1 (0anObe + OpnDac + Ocndab) + A2dandpnden



One-loop beta functions

N+8 ,

Bgy = —€84 + Tg4

€ 1 1
Be = — 581~ ng (81 + &) + 38 (N +5)g1 + &)

€

1
Be = 58— 7 (N=1)g + &) + & (N 1e1 +3g)



Free bulk

o N = 2: two pairs of purely imaginary fixed points, one stable

o N> 2:
o One pair of real unstable fixed points
o Purely imaginary fixed points with gg = 0 and g» = #iv/2¢ and
critical exponent (e, —5)
o Two pairs of complex conjugate fixed points: complex critical

exponent but with positive real part

= No unitarity



Interacting bulk

(4]

N = 2: all fixed points real but unstable

o N = 3,4: appearance of complex fixed points, unstable
@ N > 5: one purely imaginary stable fixed point

o N > Ngjr ~ 7.1274 + O(€): only complex fixed points

At the stable purely imaginary fixed points:

o Quadratic operators have real dimensions within unitarity bounds



Large-N behavior

Denoting g1 = 2iv/2ex , go = 2i\/2ey, the purely imaginary stable fixed
points are given by:



Large-N behavior

Denoting g1 = 2iv/2ex , go = 2i\/2ey, the purely imaginary stable fixed
points are given by:

Critical exponents



Quadratic operators

o Two quadratic operators O; = \)% and O, = ng%v
o Compute dimensions at the purely imaginary stable fixed points at
large N

€ 2
A —2_°_
2 N

5e
AL =2— —
+ N

o Corresponding to the operators

O_ = N1/2@1+@2

1
—_ 1/2
04 = <N 2N1/2>@1+©2




Symplectic fermions

M pairs of symplectic fermions and one scalar:

S[¢] = /c/d+1 [ 0, Pp0" ¢ + 0,,0,0"0, +—(¢2+2e 9,)°
+/ddx {/\maaéa + 3f¢3}

o General M: OSp(1|2M) symmetry broken to Sp(2M)
o M = 1: can preserve OSp(1|2) if Ao = 2)\;

o Beta functions obtained by setting N — 1 —2M



Fixed points

Quartic coupling: g7 = gjng = positive for M < 4

o M=1

o Four pairs of real fixed points
o One preserves OSp(1]2)
o Only the trivial fixed point is stable

02<M<L4
o Complex non-trivial fixed points

o Complex critical exponents

o Only the trivial fixed point is stable



Boundary action and propagator

Slo] = / y dyd“x [;am/a%/ + % (qw/)z]
V> !
A A
+ / ddx |:21 ¢N¢a¢a + 3f¢?vj|

@ Neumann boundary conditions

@ Two terms in the free bulk propagator

(91(x1,11)04(x2, ¥2)) B =
5IJr (ddTH) ( ! d—1 + ! d— 1>
A \(G+ (1 —»)2) 7 (G + (1 +x)?) 2



Propagators in momentum space

Boundary to bulk and boundary propagators

—lply 1
B e
KI(J )(p7y) = ‘p| 5/_/7 1J (p) = m

(]

Pure boundary graphs: factor 2 for each propagator

(]

Boundary-to-bulk graphs:

- factor 2 for each propagator
- extra dimension integrated only over half-space

Not a simple rescaling of the coupling constants

Qualitatively different from the interface case



Link with long-range models

o Non-trivial power of the Laplacian: ¢, (—82)<¢/, 0<(¢x1

Propagator C(p) = p%

(7]

o Cubic interactions: marginal for ¢ = %, d<6

Study fixed points for { = 4£¢

(]

@ Recover boundary model for d =3 — ¢



Link with long-range models

o Non-trivial power of the Laplacian: ¢, (—82)<¢/, 0<(¢x1

Propagator C(p) = p%

(7]

o Cubic interactions: marginal for ¢ = %, d<6

Study fixed points for { = 4£¢

(]

@ Recover boundary model for d =3 — ¢

Long-range models < Boundary interactions with free bulk



Beta functions and fixed points

After rescaling of the cubic couplings:

€. 1., . . 2 - -
Br=—3 1—ng(gﬁrgz)+§g4((/\/+5)g1+gz)

€. 1 - . - -
Br=—3&—, ((N- 1)& + &5) + 284 (N — 1)&1 + 3&2)

o N = 1: real unstable fixed points

e 2 < N < 16: complex fixed points, only the trivial fixed point is
stable
o N > 17: purely imaginary stable fixed points



Summary and outlook

o N = 1: Real fixed points but unstable

(]

Large N: One pair of purely imaginary stable fixed points

o Critical N: no real fixed points for N > N,z = 7.1274

(]

Stable fixed points always purely imaginary



Summary and outlook

o N = 1: Real fixed points but unstable

(]

Large N: One pair of purely imaginary stable fixed points

o Critical N: no real fixed points for N > N,z = 7.1274

(]

Stable fixed points always purely imaginary

(~]

Unitarity? Extraordinary universality class?

(]

€ = 1: compare with surface defect of [Krishnan, Metlitski 2301.05728]

(]

Monotonicity theorem
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