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Riemann’s zeta-function

Zeta-function:

ζ(s) =
∞∑

n=1

1
ns

(
s ∈ C,
Re(s) > 1

)

Euler’s product formula:

ζ(s) =
∏

p prime

(
1

1 − p−s

)

Riemann: use this & complex analysis to study
distribution of primes
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Number fields

Finite field extensions of Q, eg

Q(
√

d) = {a + b
√

d : a,b ∈ Q} (d ∈ N squarefree)

OK ring of algebraic integers in K
Not a UFD, but have unique factorisation of ideals into prime ideals
Dedekind zeta function:

ζK (s) =
∑
aPOK

1
Norm(a)s =

∏
pPOK

prime ideal

(1 − Norm(p)−s)−1
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Leading terms

Theorem (Analytic class number formula)
We have

lim
s→1

(s − 1)ζK (s) =
2r1(2π)r2RK hK

wK
√

DK

(hK = order of class group, RK related to units of OK )

So the zeta-function (analytic object) encodes algebraic properties
of K (class group / units)
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Function fields

What other fields “behave like” algebraic number fields?

Answer: Function fields of algebraic curves over finite fields, e.g.

y2 = f (x), f ∈ Fp[X ]

Prime ideal p for each point (x , y) of C (over Fp or any extension,
up to Galois action)
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Zeta functions of curves

Can form a zeta function of C:
ζC(s) =

∏
p(1 − Norm(p)−s)−1

“Generating function” for points on C:

ζC(s) = exp

∑
k≥1

#C(Fpn)

n
p−ns


Hasse, Weil: this is a rational function of
p−s, and satisfies an analogue of the
Riemann hypothesis.
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Back to the rational numbers

What about algebraic curves over Q (or other number fields)?

First interesting case: elliptic curves, y2 = cubic in x
Set of rational points can be finite, or infinite
Can show it has an abelian group structure; but what is its rank?
Maybe some sort of generating function might explain this?
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An outrageous idea

Can reduce equations mod p (excluding finitely many bad primes)

E ⇝ Ep curve / Fp

Maybe if E has “lots” of points over Q, it should also have more
than expected number of points over Fp (for lots of primes p)
Outrageous idea: just smash the ζEp(s) for different p together
into an infinite product
Slight refinement:

L(E , s) :=
ζ(s)ζ(s − 1)∏

p ζEp(s)
(removes some junk terms)
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Some examples

L(E , s) for E := Y 2 = X 3 − n2X

Rank of E(Q): 0, 1, 2 respectively
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Analytic continuation

L(E , s) for E := Y 2 = X 3 − n2X
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Rank of E(Q): 0, 1, 2 respectively
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The Birch–Swinnerton-Dyer conjecture

Conjecture (Birch–Swinnerton-Dyer, 1963)
Let E be an elliptic curve. Then: ords=1 L(E , s) = r(E)︸︷︷︸

rank of E(Q)

.

Also predict leading term at s = 1 in terms of finer algebraic
invariants (regulator, Shafarevich–Tate group)
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Generalising the BSD conjecture

Definition of L-function makes sense much more generally:

▶ Algebraic varieties (systems of algebraic equations, any number of
variables)

▶ Varieties over any number field (not just Q)

▶ motives = “pieces” of the geometry of algebraic varieties

Always given by infinite products over primes (Euler products)
Less obvious how to generalise rank

▶ Works for varieties when the points have a group structure (Abelian
varieties)

▶ Doesn’t make sense for general motives
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The Bloch–Kato conjecture

Conjecture (Bloch–Kato, 1990)
For any motive M and n ∈ Z, we have

ords=n L(M, s) =

rank of certain cohomology group
(Selmer group) attached to M and n

Refined form predicting leading term
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BSD for small orders of vanishing

Theorem (Kolyvagin, 1989)
Let E/Q be an elliptic curve. If ords=1 L(E , s)
= 0 or 1, then rankE(Q) = ords=1 L(E , s).

Steady progress towards leading term formula under these
hypotheses (most cases done, but not all)
Originally needed to assume E modular – now a theorem that
this always holds (Wiles, Breuil–Conrad–Diamond–Taylor)
Still know virtually nothing for order of vanishing ≥ 2
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Modularity

Upper half-plane H = {z ∈ C : Im(z) > 0}

For N ≥ 1 the group

Γ0(N) = {
(

a b
Nc d

)
: a,b, c,d ∈ Z,ad − Nbc = 1}

acts on H, and on compactification H∗ = H ∪ P1(Q)
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Modularity

Say E is modular if for some N, ∃ complex-analytic map

ϕ : Γ0(N)\H∗ ↠ E(C).

Taniyama–Shimura conjecture: all E/Q are modular (proved by
Taylor–Wiles, Breuil–Conrad–Diamond–Taylor)
Key to proof of Fermat’s last theorem
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CM points and Heegner points

A CM point is a point in H of form a +
√
−d , a,d ∈ Q, d > 0

Heegner point on a modular elliptic curve: image of a CM point
under ϕ : Γ0(N)\H∗ ↠ E(C)

Miracle: Heegner points are algebraic, i.e. lie in E(Q) (entirely
un-obvious from construction)
Shimura reciprocity describes precisely which number field each
one lives in (always an abelian extension of Q(

√
−d))
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Kolyvagin’s Euler system

Heegner theory gives points cn ∈ E(Kn) for an infinite family of
number fields Kn

Norm-compatibility relation: for n | m, have Kn ⊆ Km and

normKm
Kn

(cm) = (
∏
p|m
p∤n

Pp) · cn,

where Pp = factor at p in Euler product for L-series
Gross–Zagier theorem: bottom point c1 is non-trivial if
ords=1 L(E , s) ≤ 1
Delicate manipulations with duality theory of Galois cohomology
⇒ bounds on E(Q): either it’s zero, or c1 generates it up to a finite
error.
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3 Kolyvagin’s theorem

4 The quest for Euler systems
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Beyond elliptic curves

Are there Euler systems for other L-functions / motives?

▶ Rubin, Kato, Perrin-Riou: general definition of what Euler systems
should be

▶ when these exist, get bounds on Selmer groups (⇝ Bloch–Kato?)

Besides Kolyvagin, two “easy” examples from units in number
fields (cyclotomic / elliptic units)
Wiles: unsuccessful attempt to build Euler system for Sym2 of
elliptic curve
Kato (2004): Euler system for a modular form
No more examples for > 10 years
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Beilinson–Flach elements

Theorem (Lei–L.–Zerbes 2014, Kings–L.–Zerbes 2017)
There is a non-trivial Euler system attached to the Rankin–Selberg
convolution of two modular forms.

Builds on work of Beilinson, Flach, and Bertolini–Darmon–Rotger
Gives new results towards Bloch–Kato, and BSD over number
fields
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A production line of Euler systems

Techniques adapted to define many new Euler systems

Correspond to automorphic forms for various matrix groups G

▶ GL2 ×GL2 (Rankin–Selberg)
▶ GSp4 (Siegel modular forms)
▶ unitary groups, Hilbert modular groups, ....

Uses geometry of Shimura varieties (generalisations of Γ0(N)\H)
Proving non-triviality is more difficult (needs explicit reciprocity
laws) – done for GSp4, and for quadratic Hilbert modular groups

[various works of Grossi, Lei, L., Pilloni, Skinner, Zerbes]
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Applications

1 Bloch–Kato non-zero values of L-functions of Siegel modular
forms (for GSp4, weight ≥ 3)

2 BSD for abelian surfaces A with L(A,1) ̸= 0 (conditional on 2 big
conjectures)

3 Euler system for symmetric square of a modular form

▶ New approach to (parts of) proof of Fermat’s last theorem
▶ Iwasawa main conjecture for Sym2

▶ Cf. parallel work of Sangiovanni–Skinner
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How far can this go?

To build Euler systems for automorphic forms on G, need two
ingredients:

▶ Subgroup H sitting “nicely” inside G
▶ Family of cohomology classes for the Shimura variety of H

Second ingredient can be identity class 1H ∈ H0(ShH)

▶ Not a trivial case!
▶ Covers Kolyvagin’s Heegner points (G = GL2,H = U(1))

and other “anticyclotomic” Euler systems

... or Siegel units when H = product of GL2’s

▶ Kato’s ES, and all the examples on last slide

... or something else? [Sangiovanni–Skinner, in preparation]

David Loeffler Euler systems Münster, 27/3/2024 27 / 28



How far can this go?

To build Euler systems for automorphic forms on G, need two
ingredients:

▶ Subgroup H sitting “nicely” inside G

▶ Family of cohomology classes for the Shimura variety of H
Second ingredient can be identity class 1H ∈ H0(ShH)

▶ Not a trivial case!
▶ Covers Kolyvagin’s Heegner points (G = GL2,H = U(1))

and other “anticyclotomic” Euler systems

... or Siegel units when H = product of GL2’s

▶ Kato’s ES, and all the examples on last slide

... or something else? [Sangiovanni–Skinner, in preparation]

David Loeffler Euler systems Münster, 27/3/2024 27 / 28



How far can this go?

To build Euler systems for automorphic forms on G, need two
ingredients:

▶ Subgroup H sitting “nicely” inside G
▶ Family of cohomology classes for the Shimura variety of H

Second ingredient can be identity class 1H ∈ H0(ShH)

▶ Not a trivial case!
▶ Covers Kolyvagin’s Heegner points (G = GL2,H = U(1))

and other “anticyclotomic” Euler systems

... or Siegel units when H = product of GL2’s

▶ Kato’s ES, and all the examples on last slide

... or something else? [Sangiovanni–Skinner, in preparation]

David Loeffler Euler systems Münster, 27/3/2024 27 / 28



How far can this go?

To build Euler systems for automorphic forms on G, need two
ingredients:

▶ Subgroup H sitting “nicely” inside G
▶ Family of cohomology classes for the Shimura variety of H

Second ingredient can be identity class 1H ∈ H0(ShH)

▶ Not a trivial case!
▶ Covers Kolyvagin’s Heegner points (G = GL2,H = U(1))

and other “anticyclotomic” Euler systems
... or Siegel units when H = product of GL2’s

▶ Kato’s ES, and all the examples on last slide

... or something else? [Sangiovanni–Skinner, in preparation]

David Loeffler Euler systems Münster, 27/3/2024 27 / 28



How far can this go?

To build Euler systems for automorphic forms on G, need two
ingredients:

▶ Subgroup H sitting “nicely” inside G
▶ Family of cohomology classes for the Shimura variety of H

Second ingredient can be identity class 1H ∈ H0(ShH)
▶ Not a trivial case!

▶ Covers Kolyvagin’s Heegner points (G = GL2,H = U(1))
and other “anticyclotomic” Euler systems

... or Siegel units when H = product of GL2’s

▶ Kato’s ES, and all the examples on last slide

... or something else? [Sangiovanni–Skinner, in preparation]

David Loeffler Euler systems Münster, 27/3/2024 27 / 28



How far can this go?

To build Euler systems for automorphic forms on G, need two
ingredients:

▶ Subgroup H sitting “nicely” inside G
▶ Family of cohomology classes for the Shimura variety of H

Second ingredient can be identity class 1H ∈ H0(ShH)
▶ Not a trivial case!
▶ Covers Kolyvagin’s Heegner points (G = GL2,H = U(1))

and other “anticyclotomic” Euler systems

... or Siegel units when H = product of GL2’s

▶ Kato’s ES, and all the examples on last slide

... or something else? [Sangiovanni–Skinner, in preparation]

David Loeffler Euler systems Münster, 27/3/2024 27 / 28



How far can this go?

To build Euler systems for automorphic forms on G, need two
ingredients:

▶ Subgroup H sitting “nicely” inside G
▶ Family of cohomology classes for the Shimura variety of H

Second ingredient can be identity class 1H ∈ H0(ShH)
▶ Not a trivial case!
▶ Covers Kolyvagin’s Heegner points (G = GL2,H = U(1))

and other “anticyclotomic” Euler systems
... or Siegel units when H = product of GL2’s

▶ Kato’s ES, and all the examples on last slide

... or something else? [Sangiovanni–Skinner, in preparation]

David Loeffler Euler systems Münster, 27/3/2024 27 / 28



How far can this go?

To build Euler systems for automorphic forms on G, need two
ingredients:

▶ Subgroup H sitting “nicely” inside G
▶ Family of cohomology classes for the Shimura variety of H

Second ingredient can be identity class 1H ∈ H0(ShH)
▶ Not a trivial case!
▶ Covers Kolyvagin’s Heegner points (G = GL2,H = U(1))

and other “anticyclotomic” Euler systems
... or Siegel units when H = product of GL2’s

▶ Kato’s ES, and all the examples on last slide

... or something else? [Sangiovanni–Skinner, in preparation]

David Loeffler Euler systems Münster, 27/3/2024 27 / 28



How far can this go?

To build Euler systems for automorphic forms on G, need two
ingredients:

▶ Subgroup H sitting “nicely” inside G
▶ Family of cohomology classes for the Shimura variety of H

Second ingredient can be identity class 1H ∈ H0(ShH)
▶ Not a trivial case!
▶ Covers Kolyvagin’s Heegner points (G = GL2,H = U(1))

and other “anticyclotomic” Euler systems
... or Siegel units when H = product of GL2’s

▶ Kato’s ES, and all the examples on last slide

... or something else? [Sangiovanni–Skinner, in preparation]

David Loeffler Euler systems Münster, 27/3/2024 27 / 28



Spherical pairs

Correct notion of ‘H sits nicely inside G’ : (G,H) should be a
spherical pair

Much-studied concept in representation theory
Connections to number theory recently emerging
(Sakellaridis–Venkatesh, Wei Zhang)
Gan–Gross–Prasad conjectures: U(n) ⊂ U(n)× U(n + 1),
SO(n) ⊂ SO(n)× SO(n + 1)
Many more cases to explore!
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