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Part I: Introduction

We outline the theory and AD and AD+ particularly as it relates to
partition relations, combinatorics and definable cardinalities.

Some topics we will discuss include:
I Basic theory of AD, scales and Suslin cardinals.
I Paritition properties and introduction to analysis of measures.
I Computation of ultrapowers and uniform cofinalities.
I Recent consequences of partition properties such as

monotonicity and continuity (joint with W. Chan and N. Trang).
I Applications to definable cardinalities in AD models.
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We develop the basic theory assuming determinacy axioms.

Let X be a set. A game on X is a set A ⊆ Xω which we view as the
payoff of a two-player game:

I

II

x0

x1

x2

x3

x4

x5

· · ·

· · ·

I wins the run iff x = (x0, x1, . . . ) ∈ A .

A strategy for I is a function σ :
⋃

n X2n → X , and similarly for II.

If x = (x1, x3, . . . ) ∈ Xω, let σ ∗ x = (x0, x1, . . . ), where
x2n = σ(x � 2n). Similarly define τ ∗ x if τ is a strategy for II.
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We say the game on A ⊆ Xω is determined if one of the players
has a winning strategy.

ADX is the assertion that every game on X is determined.

AD is the assertion that every game on X = ω is determined.

I AD was introduced by Mycielski and Steinhaus.
I AD is equivalent to AD2.
I ADR is stronger than AD.
I ADP(R), ADω1 are inconsistent.

We generally work in the base theory ZF + AD + DCR.
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By Gale-Stewart, every open game A ⊆ Xω (in the product of the
discrete topologies) is (quasi) determined.

This follows from the rank-analysis of the game:

Let W0 be the set of s ∈ X<ω of even length such that Ns ⊆ A .

Let W<α =
⋃
β<α for α limit.

Let Wα = W<α ∪ {s : ∃x ∈ X ∀y ∈ X (saxay ∈ W<α)}
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Let θ be least so that Wθ = Wθ+1. For s ∈ Wθ, let |s| be the least α
such that s ∈ Wα.

Then I has a winning (quasi) strategy from s if s ∈ Wθ.

If s < Wθ, then II has a winning (quasi) strategy from s. Namely, if I
plays x, then II plays the (set of) y such that saxay < Wθ.

This gives a canonical winning (quasi) strategy for a closed game.
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Theorem (Martin)
(ZFC) Every Borel game on a set X is determined.

Hurkens and Neeman showed that in ZF, every Borel game is
quasi-determined.

I (Harrington, Martin) Σ1
1-determinacy is equivalent to ∀x x#

exists.
I (Martin-Steel, Woodin) Σ1

n+1-determinacy is equiconsistent
with ∃n Woodin cardinals. Σ1

n+1 determinacy follows from ∃n
Woodin cardinals plus a measurable.

I (Woodin) ADL(R) follows from ∃ω many Woodin cardinals plus
a measurable. AD is eqiconsistent with ∃ω many Woodin
cardinals.
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Remark
Recently, Borel determinacy has found application to the theory of
Borel equivalence relations.

For Γ a finitely generated group with a given presentation (a
marked group), let χB(F(ωΓ)) be the Borel chromatic number of
the free part of the shift-action of Γ on the space ωΓ.

For Γ, ∆ countable groups, let Γ ∗∆ denote their free product.

Theorem (Marks)
χB(ωΓ∗∆) ≥ χB(ωΓ) + χB(ω∆) − 1.

Theorem (Marks)
For each 2 ≤ i ≤ n + 1, there is an n-regular Borel graph with Borel
chromatic number equal to i.
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Definition
A tree on a set X is a set T ⊆ X<ω closed under subsequence.
b ∈ Xω is a branch through T if ∀n b � n ∈ T . We let [T ] denote
the set of infinite branches through X .

Fact
A set A ⊆ Xω is closed iff if there is a tree T ⊆ X<ω such that
A = [T ].

A Suslin representation generalizes this representation for closed
sets.

Definition
If T is a tree on X × Y , then p[T ] ⊆ Xω is defined by:

x ∈ p[T ] iff ∃y ∈ Yω (x, y) ∈ [T ]

iff ∃y ∈ Yω ∀n (x � n, y � n) ∈ T .
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Definition
A ⊆ Xω is κ-Suslin if there is a tree T on X × κ such that A = p[T ].
Let S(κ) denote the collection of κ-Suslin subsets of ωω.

Fact
S(κ) is a pointclass closed under ∃ω

ω
, countable unions and

intersections and (Kechris), assuming AD, non-selfdual.

Definition
κ is a Suslin cardinal if S(κ) \

⋃
λ<κ S(λ) , ∅.
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A Suslin representation of A ⊆ ωω on κ is equivalent to a
semi-scale on A into κ.

Definition
A semi-scale on A is a sequence of maps ϕn : A → On such that if
xm ∈ A , xm → x, and for each n, ϕn(xm) is eventually constant, say
equal to λn, then x ∈ A .

{ϕn} is a scale on A if in addition, ϕn(x) ≤ λn.

{ϕn} is a Γ-scale if the norm relations are in Γ:

x <∗n y ↔ (x ∈ A) ∧ [(y < A) ∨ (y ∈ A ∧ ϕn(x) < ϕn(y)]

x ≤∗n y ↔ (x ∈ A) ∧ [(y < A) ∨ (y ∈ A ∧ ϕn(x) ≤ ϕn(y)]
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The Moschovakis periodicity theorems propagate the scale proprty
under quantifiers.

Fact
(ZF) Assume scale(Γ) where Γ is closed under ∀ω

ω
, ∧, ∨. Then

scale(∃ω
ω
Γ).

Theorem
(∆-det+DCR) Assume scale(Γ) where Γ is closed under ∃ω

ω
, ∧,

∨. Then scale(∀ω
ω
Γ).

Corollary
(PD + DCR) scale(Π1

2n+1), scale(Σ1
2n+2) for all n ≥ 0.
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Partition Relations

We use the Erdös-Rado partition notation.

Definition
κ → (λ)εδ if for every partition P : κε → δ, there is a H ⊆ κ with
|H| = λ such that P � [H]ε is constant.

Remark
We usually have λ = κ.

We say κ has the strong partition property if κ → (κ)κ2, and the very
strong partition property if κ → (κ)κ<κ. κ has the weak partition
property if ∀ε < κ we have κ → (κ)ε2.

We abbreviate the strong and weak as κ → (κ)κ and κ → (κ)<κ.
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In the AD context an alternate form of the partition relations is
preferred.

We say a function f : ε → κ is of the correct type if it is increasing,
discontinuous, and of uniform cofinality ω.

We let [κ]ε∗ denote the function from ε to κ of the correct type.

We say κ
cub
−→ κε if for every partition P : [κ]ε∗ → {0, 1}, there is a

c.u.b. C ⊆ κ such that P � [C]ε∗ is constant.
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The two versions of the partition relation are essentially equivalent.

Fact

1. κ
cub
−→ (κ)ε implies κ → (κ)ε .

2. κ → (κ)ω·ε implies κ
cub
−→ (κ)ε .

In particular, the notion of weak and strong partition properties are
the same for these two versions.

More generally, we have the c.u.b. version of the partition property
for functions ε → κ of any specified type, that is, any specified
uniform cofinality.
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Kunen Tree

Theorem
There is a tree T on ω × ω1 such that for all f : ω1 → ω1 there is an
x ∈ ωω with Tx wellfounded and for all α ≥ ω:

f(x) ≤ |Tx � α|.

Proof: There is a tree W on ω × ω such that
sup{|Wx | : Wx is wellfounded } = ω1.

Let S ⊆ (ω × ω1)<ω be the tree of the nautural Π1
1-scale on WO.

Let T be the tree on ω × ω × ω1 × ω × ω given by: (s, t , ~α, u, v) ∈ T
iff

1. ∃σ, x, y extending s, t , u with σ ∗ x = y.

2. (t , ~α) ∈ S.

3. (u, v) ∈ W .
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To see this works, let f : ω1 → ω1.

Play the Solovay game where I plays x, II plays y, and II wins iff

(x ∈ WO)→ (Wy is wellfounded) ∧ |Wy | > |x |)

By boundedness, II wins this game, say by σ.

Then for all α ≥ ω, there is an x ∈ WO with x ∈ p[S � α], and so
|Wσ(x)| > f(α).

So, |Tσ � α| > f(α).
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Uniform cofinalities at ω1

We analyze the possible uniform cofinalities for a function
f : (ω1)n → ω1.

By the partition relation ω1 → (ω1)n+1, there is a function
g : ω1 → ω1 such that ∀∗α1 < · · · < αn f(α1, . . . , αn) < g(αn).

Let x ∈ ωω be such that

∀∗~α f(~α) < g(αn) < |Tx � αn |.

Let h(~α) ≤ αn be least so that for some function
` : {(~α, β) : β < h(~α)} → ω1 we have, for almost all ~α:

sup{`(~α, β) : β < ~h(α)} = f(~α).
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Claim
∀∗α1, . . . , αn h(~α) = αi for some i, or h(~α) is almost everywhere
constant.

Suppose ∀∗~α αi < h(~α) < αi+1. Let h′(~α) = αi .

By a partition as above, there is a function k : ω1 → ω1 such that
∀∗~α h(~α) < k(αi).

Fix y so that k(β) < |Ty � β| almost everywhere.

Define `′(~α, β) for β < αi by

`′(~α, β) = `(|Ty � αi(β)|)

if |Ty � αi(β)| < h(~α), and 0 otherwise.
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Then h′, `′ violates the minimality of h, `.

So either h(~α) = αi or h(~α) is constant almost everywhere.

In the first case we have that f(~α) has uniform cofinality αi almost
everywhere. In the second case, f(~α) has uniform cofinality ω
almost everywhere.

Fact
These uniform cofinalities are distinct.
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A similar analysis describes the (almost everywhere) type of an
arbitrary f : ωn

1 → ω1.

There is a partial permutation π = (i1, . . . , ik ) of (1, . . . , n)
beginning with n so that f(~α) < f(~β) iff

(αi1 , . . . , αik ) <lex (βi1 , . . . , βik ).

Then either:
I f(~α) has uniform cofinality ω.
I f(~α) is continuous almost everywhere.
I There is a partial permutation π′ extending π which gives the

unform cofinality.
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Analysis of measures on ω1

Fact
Assuming AD, every ultrafilter on a set X is countably additive.

The (cub) partition relation κ → (κ)2 gives that the ω-cofinal c.u.b.
filter of κ is a normal measure W1

1 on κ.

Let Wn
1 denote the n-fold product of W1

1 .

Theorem (AD + DCR)
Let µ be a measure on ω1. Then µ is equivalent to Wn

1 for some n
(or to a principal measure).
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Proof: Assume µ is non-principal.

Let f1 : ω1 → ω1 represent the least equivalence class such that f1
is almost everywhere non-constant, and monotonically increasing.

Let ν1 = f1(µ). Then ν1 = W1
1 . Fix a µ measure one set A1 on

which f1 is monotonically increasing.

Let g1(β) = sup{α ∈ A1 : f1(α) ≤ α}.

Let x1 be such that ∀∗β1 g1(β1) < |Tx1 � β1|.

For µ almost all α, let r1(α) be such that

α = |Tx1 � f1(α)(r1(α))|.
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Now we proceed with the measure r1(µ).

Consider the case r1 not constant almost everywhere. Note that
a.e. r1(α) < f1(α).

Let f2 represent the least µ equivalence class such that f2 is not
a.e. constant, and is a.e. monotonically increasing with respect to
r1.

That is, there is a µ measure one set A such that if α, α′ are in A ,
f1(α) = f1(α′), and r1(α) ≤ r1(α′), then f2(α) ≤ f2(α′).
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Note that there does not exist a c.u.b. C ⊆ ω1 and a µ measure one
set A such that for all β ∈ C, {f2(α) : f1(α) = β ∧ α ∈ A } is bounded
below f1(α). [Otherwise r2 is constant µ almost everywhere.]

Claim
We have f2(µ) = W1

1 .

For suppose C ⊆ ω1 is c.u.b. and ∀∗µα f2(α) < C.

Let f ′2 = `C ◦ f2 where `(γ) is the largest element of C ≥ γ.

Then for µ almost all α we have f ′2(α) < f2(α) and f ′2 is
monotonically increasing “on the f1 blocks” with respect to r1. Also,
f ′2 is not constant µ almost everywhere. This contradicts the
definition of f2.
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Fix a µ measure one set A2 ⊆ A1 on which f2 is monotonically
increasing on the f1 blocks with respect to r1.

Define g2 by:

g2(β2, β1) = sup{r1(α) : α ∈ A2 ∧ f1(α) = β1 ∧ f2(α) = β2}.

Then for W2
1 almost all (β2, β1), g2(β2) < β1. This follows from the

monotonicity of f2 on the f1 blocks and the fact that f2 is not
constant µ almost everywhere.
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For W2
1 almost all (β2, β1), g2(β2, β1) depends only on β2.

Fix x2 such that for W1
1 almost all β2, g2(β2) < |Tx2 � β2|.

This then defines r2: ∀∗µα

α = |Tx1 � f1(α)(|Tx2 � f2(α)(r2(α))|)|

Continuing, we define f1, . . . , fn, g1, . . . , gn for some n, reals
x1, . . . , xn, and r1, . . . , rn such that rn is constant almost
everywhere, say equal to δ.
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We then have: ∀∗µα

α = |Tx1(f1(α))(|Tx2(f2(α))(· · · (|Txn (fn(α)(δ))|) · · · )|)|

We also have that if F(α) = (f1(α), . . . , fn(α), then F(µ) = Wn
1 .

Let G(β1, . . . , βn) = |Txn � (βn)(Gn−1(β1, . . . , βn−1))|, where
Gk (β1, . . . , βk ) = |Txk � βk (Gk−1(β1, . . . , βk−1))|,

and G0(∅) = δ.
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We have defined a µ measure one set An on which F is one-to-one
and F(µ) = Wn

1 .

This completes the analysis of measures on ω1.
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Proving partition relations

We present the general framework, due to Martin for proving
partition relations from AD.

Definition
Let λ ≤ κ, where λ ∈ On, κ a cardinal. We say κ is λ-reasonable if
there is a non-selfdual pointclass Γ closed under ∃ω

ω
and a map φ

with domain ωω satisfying:

1. φ(x) ⊆ λ × κ.

2. ∀f : λ→ κ ∃x ∈ ωω φ(x) = f .

3. ∀α < λ ∀β < κ Rα,β ∈ ∆, where
x ∈ Rα,β ↔ φ(x)(α, β) ∧ (φ(x)(α, β′)→ β′ = β).

4. Suppose α < λ, A ∈ ∃ω
ω
∆, and

A ⊆ Rα = {x : ∃β < κ x ∈ Rα,β}. Then
∃β0 < κ ∀x ∈ A ∃β < β0 φ(x)(α, β).
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Theorem (Martin)
Suppose κ is ω · λ reasonable. Then κ → κλ.

Proof: Assume that ∆ is closed under < κ unions and intersections
(this actually follows).

Let P : κλ∗ → {0, 1} partition the functions of the correct type.

Play the game: I plays out x, II plays out y.
I If there is a least α < ω · λ such that ¬Rα(x) or ¬Rα(y), then I

wins iff Rα(x).
I Otherwise, let fx , fy be the functions they determine: fx(α) = β

iff Rα,β(x). Let

fx,y(α) = sup{max(fx(α′), fy(α′)) : α′ < ω · (α + 1)}.

Then II wins iff P(fx,y) = 1.
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Say II has a winning strategy τ.

Define a c.u.b. C ⊆ κ as follows.

For α < ω · λ, β < κ, let

x ∈ Sα,β ↔ ∀α
′ ≤ α ∃β′ ≤ β Rα′,β′(x).

So, Sα,β ∈ ∆. So τ[Sα,β] ∈ ∃ω
ω
∆.

Also, τ[Sα,β] ⊆ Rα.

Let g(α, β) = sup{φ(x)(α) : x ∈ τ[Sα,β]} < κ.
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Let C ⊆ κ be closed under g.

Then C is homogeneous for P:
I Let f : λ→ C ′ be of the correct type.
I Let x be such that φ(x) codes a function fx (i.e., x ∈ Rα for all
α < ω · λ) and fx induces f (i.e., f(α) = sup{fx(α′) : α′ < ω · α}).

I Let y = τ(x), so y codes fy : ω · λ→ κ.
I For all α, fy(ω · α + n) < fx(ω · α + n + 1), so fx,y = f .
I Since τ is winning for II, P(f) = 1.
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Coding at ω1

Fact (AD)
Every ultrafilter on a set X is countably additive (i.e., a measure).

Fact (AD)
(Martin) The cone filter is a measure on the set D of Turing
degrees.

Definition
Θ is the supremum of the lengths of the pwos of R.

Fact
(Kunen) Let λ < Θ. Then every countably additive filter F on λ can
be extended to a measure on λ.
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Proof: Let π : ωω → P(λ) be onto (coding lemma).

Let ν be the Martin measure on D.

For d ∈ D, let

f(d) = min ∩{π(x) : x ∈ d ∧ π(x) ∈ F }.

Let µ = f(ν).
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Fix the Kunen tree T at ω1.

We say τ ∈ ωω is a code for a c.u.b. set if ∀x ∈ WO τ(x) ∈ WO.

Let Cx = {α < ω1 : ∀γ < α |Tx � γ| < α}.

Fact
For every c.u.b. C ⊆ ω1 there is a code x such that Cx ⊆ C.
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Definition
A set S ⊆ ω1 is simple if there is a c.u.b. code τ, an α0 < ω1,
x1, . . . , xn with Txi wellfounded such that

S = {α : ∃α1 < · · · < αn ∈ Cτ α = hn(α1, . . . , αn;~x)}

where

hi(α1, . . . , αi;~x) = |Txi � αi(hi−1(α1, . . . , αi−1;~x))|

and
h0(~x) = α0.
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A code for the simple set S a real of the form (x0; x1, . . . , xn; τ)
where τ is a c.u.b. code, x0 ∈ WO, and Txi are wellfounded.

Following an argument of Kunen we show:

Fact
Every A ⊆ ω1 is a countable union of simple sets.

Proof: Let I be the σ-ideal generated by the simple sets contained
in A .

Assume toward a contradiction I is a proper ideal, and let µ be a
measure on A extending the corresponding filter F .
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By the analysis of measures on ω1, there are x1, . . . , xn with Txi

wellfounded and an α0 < ω1 such that for all B ⊆ ω1 (assuming B
is not bounded):

µ(B) = 1↔ ∃c.u.b. C ⊆ ω1∀β1 < · · · < βn ∈ C

hn(α0; β1, . . . , βn, x1, . . . , xn) ∈ B .

Since µ(A) = 1, we may fix a c.u.b. code τ, a x0 ∈ WO coding α0,
and the x1, . . . , xn above.

Let S = S(x0; x1, . . . , xn; τ) be the simple set given by these reals,
so S ⊆ A .

Then µ(S) = 1, but this contradicts S ∈ I.
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We now define the coding map φ. As a warm-up we first define a
coding for subsets of ω1, so φ(x) ⊆ ω1.

View x ∈ ωω as coding countably many (x i
0; x i

1, . . . , x
i
ni

; τi).

Set φ(x)(α) iff ∃i α ∈ S(x i) = S(x i
0; x i

1, . . . , x
i
ni

; τi) iff

∃i ∃β1 < · · · < βni ∈ Cτi ∩ α [|x i
0| < α

∧ h(|x i
0|; β1, . . . , βni ; x i

1, . . . , x
i
ni

) = β].
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So, every A ⊆ ω1 is of the form φ(x) for some x ∈ ωω.

This is a ∆1
1-coding of the subsets of ω1:

For all α < ω1, {x : φ(x)(α)} ∈ ∆1
1.

We modify this coding to code functions from ω1 to ω1. So,
φ(x) ⊆ ω1 × ω1.

It is not quite good enough to just regard f : ω1 → ω1 as a subset
of ω1 × ω1 ≈ ω1.
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Suppose f : ω1 → ω1 is increasing.

A simple subfunction S ⊆ f is one where there is a c.u.b.code τ,
x1, . . . , xn with Txi wellfounded, and two γ0, γ1 < ω1 such that:

(α, β) ∈ S ↔ ∃max{γ0, γ1} < β1 < · · · < βn < α

[β1, . . . , βn ∈ Cτ ∧ h(γ0, β1, . . . , βn;~x) = α

∧ h(γ1, β1, . . . , βn;~x) = β]

Steve Jackson Determinacy, Partition Properties, and Combinatorics I



An argument similar to that for sets shows that every function f is a
countable union of simple subfunctions.

I We let X = f , and analyze the measures on X .
I If µ is a measure on X , let f0 : X → ω1 represent the least

equivalence class of a function which is not µ a.e. constant
and monotonically increasing in the first argument (if α1 ≤ α2,
then f0(α1, β1) ≤ f0(α2, β2)).

I f0(µ) = W1
1 as before.

I Let g0(δ) = sup{max{α, β} : (α, β) ∈ X ∧ f0(α) ≤ δ}.
I The rest of the argument proceeds as before.
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Weak partition relation at ω2

Fix λ < ω2, and we show ω2 → (ω2)λ.

Fix a function h : ω1 → ω1 with [h]W1
1

= λ.

Say a function f is of type h if dom(f) = {(α, β) : α < h(β)}.

Note that [f ]W1
1

is a function F from λ to ω2:

F([h′]W1
1
) = [β 7→ f(h′(α), β)]W1

1

for [h′] < [h] = λ.
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Fact
Every F : λ→ ω2 is represented as F = [f ]W1

1
for some f of type h.

Fix h′ with [h′] > supα,λ F(α), and let |Tx � α| > max{h(α), h′(α)}.

For γ < ω1, let αγ = [β 7→ Tx � β(γ)] if this is less than h(β). Let
βγ = F(αγ).

Let g(γ) < ω1 be such that [β 7→ |Tx � β(g(γ))|]W1
1

= βγ.

Then F = [β 7→ {(|Tx � β(γ), |Tx � β(g(γ))|) : γ < β}.
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Let P′ partition the functions f of type h according to whether
P(F) = 1, where F = [f ]W1

1
.

Let C ⊆ ω1 be homogeneous for P′.

Let D = jW1
1
(C) ⊆ ω2. If F : λ→ D is of the correct type, then there

is an f : ω1 → C of type h with F = [f ].

This shows D is homogeneous for P.
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Non-partition results at ω2

Theorem (Chan, J, Trang)
Let A ⊆ ω2 and suppose there is a c.u.b. C ⊆ ω2 such that
A ∩ C = cofω ∩ C. Then A < UltW1

1
.

We use the following lemma.

Lemma (almost everywhere club uniformization)
Let f : ω1 → P(ω1) with ∀∗α f(α) contains a club. Then there is a
club C ⊆ ω1 such that ∀∗α ∈ C \ {α + 1} ⊆ f(α).

Proof: Partition f : ω1 → ω1 of the correct type according to
whether ran(f) \ {f(0)} ⊆ Af(0). On the homogeneous side this
must hold, say by C. Fix f : ω1 → C of the correct type. Then
ran(f) witnesses the Lemma.
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Lemma
Assume κ → κκ. Let µ be a normal measure on κ. Let δ = jµ(κ).
Then if D ⊆ δ is c.u.b., there exists a c.u.b. C ⊆ κ with jµ(C) ⊆ D.

Proof: Partition f , g : κ → κ of the correct type with
f(α) < g(α) < f(α + 1) according to whether [g]µ > ND([f ]µ).

On the homogeneous side this holds. Say C ⊆ κ is homogeneous
for this side.

Then jµ(C ′) ⊆ D.
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Proof of Theorem: Let C ⊆ ω2 be as in the Theorem, so
A ∩ cofω = C ∩ cofω. Suppose A = [F ]W1

1
, where F(α) ⊆ ω1.

Let C0 ⊆ ω1 be such that jW1
1
(C0) ⊆ C.

Case 1. ∀∗α F(α) contains a club.

By the Lemma, let C1 ⊆ ω1 be such that ∀∗α C1 \ {α + 1} ⊆ F(α).

Let C2 = C0 ∩ C1.

Fix f : ω1 → C2 such that f(α) has uniform cofinality α.
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Then [f ] has cofinality ω1 and is in j(C0) ⊆ C.

So by the assumed property of A , [f ] < A .

On the other hand, ∀∗α f(α) ∈ C1 \ {α + 1} ⊆ F(α). So,
[f ] ∈ [F ] = A .

Case 2: ∀∗α F(α) is disjoint from a club.

The argument is similar, but now taking f : ω1 → C2 such that f(α)
has uniform cofinality ω.
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