Club Stationary Reflection (and Friends)

Thomas Gilton

University of Pittsburgh (\neq CMU)

Thursday, June 1st, YST Workshop, Münster

We're interested in the following general question:

General Question How can we create models of ZFC which are simultaneously *L*-like and not *L*-like?

- Background to the question
- The main characters: combinatorial principles CSR, TP, SATP, AP; and some techniques (Mitchell forcing, club adding, weakly compact Laver diamonds)
- Interactions between the characters and theorems

The goal is that by the end of the talk you will...

- see how this topic connects to "classic" questions in set theory
- A have a general sense of some of the techniques
- I know some open questions (if you want to work on them)

Given a (transitive) model M of ZFC,

(*) the "smallest" it can be is L (or a level thereof).

We'd like a variety of ways of measuring how "close" M is to L. Lots of (related!) ways of doing this:

- Models of forcing axioms; these are "wide". You've done all forcings of a certain type along the way...
- Models of large cardinals
- comparing specific combinatorial principles between *M* and *L*.

Interested in two classes of such combinatorial principles:

Reflection and Compactness Principles

- Reflection Principles go big-to-small: a "nice" property of a large structure also holds for many smaller substructures.
- Compactness Principles go small-to-big: a large structure with many smaller substructures having a "nice" property also has this property.

Example

Stationary Reflection for (1); Tree Property for (2).

Not in L

L fails to satisfy many reflection and compactness principles. The culprit: \Box_{κ} .

Hence, models which do satisfy them are (in that respect) non-L-like.

Refining the question:

- what kinds/amount of reflection or compactness hold in your model?
- how can we make models which realize a lot of *tension* in the sense of satisfying some compactness/reflection and failing other compactness/reflection?
- Such a model would be *L*-like and non-*L*-like simultaneously (have cake and eat it too...)
- Let's move to defining the principles of interest:

Definition

Suppose $cf(\beta) > \omega$. $S \subseteq \beta$ is stationary if $S \cap C \neq \emptyset$ for all club $C \subseteq \beta$.

(*) stationary sets are (great for night life and) positive measure with respect to the club filter. Continuous constructions on β land in *S*.

Definition

A stationary $S \subseteq \beta$ reflects if there is $\alpha \in \beta \cap cof(>\omega)$ so that $S \cap \alpha$ is stationary in α .

(*) Positive measure set having a positive measure initial segment.

Let's get to know each other

The 1st cardinal on which stationary reflection is non-trivial is ω_2 :

- No stationary subsets of ω...
- We do have stationary subsets of ω_1 , but no reflection...

Another restriction we need to place on S for reflection to make sense:

Reflection Point has (relatively) High Cofinality

If all $\alpha \in S \subseteq \omega_2$ have cofinality ω_1 , then S reflects nowhere:

♣ given a limit $β < ω_2$, avoid *S* ∩ *β* by a club of countable cofinality ordinals.

No Soup (in L) For You

 \Box_{ω_1} implies that every stationary $S \subseteq \omega_2 \cap \operatorname{cof}(\omega)$ contains a stationary S_0 which reflects nowhere. (Much more general than this.) Hence almost no stationary reflection in L.

Slogan: all (appropriate) positive measure sets having positive measure initial segments:

Definition

 κ^+ satisfies the *Stationary Reflection Principle* if every stationary $S \subseteq \kappa^+ \cap \operatorname{cof}(<\kappa)$ reflects. Denoted $\operatorname{SR}(\kappa^+)$.

We want more! (we're doing set theory, after all) We want each appropriate S to reflect *almost everywhere*:

Definition

Say κ regular. κ^+ satisfies the *Club Stationary Reflection Principle* if for every stationary $S \subseteq \kappa^+ \cap \operatorname{cof}(<\kappa)$, there is a club $C \subseteq \kappa^+$ so that S reflects at every $\alpha \in C \cap \operatorname{cof}(\kappa)$. Denoted $\operatorname{CSR}(\kappa^+)$.

- Baumgartner (1976) showed that SR(ω₂) is consistent, using a weakly compact.
 - Levy collapse a weakly compact κ to be ω_2 ;
 - a really nice preservation theorem shows this is sufficient.
- Omega Magidor (1982) showed that CSR(ω₂) is consistent, from a weakly compact (optimal).
 - Levy collapse such a κ , then iterate to add clubs.
- Solution and Shelah (1985) showed that $SR(\omega_2)$ is consistent from a Mahlo cardinal (optimal).
 - Levy collapse a Mahlo κ, then iterate to destroy "bad" stationary sets.

Introducing the Next Character: Trees

A compactness principle now (recall: small-to-big), and its negation:

Definition

A κ^+ -tree is a tree of height κ^+ with width $\leq \kappa$.

A *cofinal branch* through a κ^+ -tree is a linearly ordered subset which hits every level.

An Aronszajn Tree is a κ^+ -tree without a cofinal branch.

Incompactness!

- A κ^+ -Aronszajn tree is an *in*compact object:
 - it has branches of every length below $\kappa^+,$ but no branch of length $\kappa^+.$
 - "abrupt stop"

We obtain a compactness principle at κ^+ by asserting that no $\kappa^+\text{-}\text{Aronszajn}$ trees exist:

Definition

 κ^+ satisfies the *Tree Property* if every κ^+ -tree has a cofinal branch. Denoted TP(κ^+).

- TP(ω) holds (König);
- **2** TP(ω_1) fails (Aronszajn);
- TP(ω₂) is independent: it fails under CH, and Mitchell showed its consistency (1972).

Definition

A Specializing Function for a κ^+ -tree T is a function $f : T \longrightarrow \kappa$ which is injective on chains. T is Special if it has a specializing function.

(*) A specializing function for a κ⁺-tree T decomposes T into a small number (i.e., κ) of simple parts (i.e., antichains).

Stubbornly Aronszajn

If T is a special κ^+ tree, then T is Aronszajn, and it remains so in any extension preserving κ^+ .

An Incompactness Principle

We get a combinatorial principle by having plenty of these (note the non-triviality condition in the following):

Definition

 κ^+ satisfies the *Special Aronszajn Tree Property*, denoted $SATP(\kappa^+)$, if

(a) a $\kappa^+\text{-}\text{Aronszajn}$ tree exists and

(b) every κ^+ -Aronszajn tree is special.

- MA implies SATP(ω₁) (Baumgartner, Malitz, Reinhardt, 1970)
- SATP(ω₂) is consistent from a weakly compact (optimal; Laver and Shelah, 1981)
- SATP(κ⁺) for all κ regular consistent (Golshani, Hayut, 2020).

The Last Character: Approachability

Next: a weakening of \Box_{κ} , which is strong enough to do work (ex: stat set preservation) in ZFC.

Definition

Suppose κ is regular and $\vec{a} = \langle a_{\alpha} : \alpha < \kappa^+ \rangle$ is a sequence of subsets of κ^+ of size $< \kappa$. $\gamma < \kappa^+$ is approachable w.r.t. \vec{a} if

 (♠) there is an unbounded A ⊆ γ of minimal ordertype all of whose proper initial segments are enumerated before stage γ.

Definition

 κ^+ satisfies the *approachability property* if there exist an \vec{a} so that almost all $\gamma < \kappa^+$ are approachable w.r.t. \vec{a} . Denoted AP(κ^+).

• Incompactness: can't approach κ^+ in this way.

The Characters Meet

In 2018, Cummings, Friedman, Magidor, Rinot, and Sinapova published a paper "The Eightfold Way" in which they show that these are mutually orthogonal.

Note

 \Box_{μ} implies $\neg \mathsf{TP}(\mu^+)$, $\neg \mathsf{SR}(\mu^+)$, and $\mathsf{AP}(\mu^+)$.

- They consider these on κ^{++} for κ either regular or countable cofinality singular.
- They show that all 8 of the Boolean combinations are consistent.

I'm interested in this flavor of problems, but obtaining models in which $SR(\kappa^{++})$ is strengthened to $CSR(\kappa^{++})$.

Theorem (Ben-Neria, G.; G.)

 $\mathsf{TP}(\aleph_2) + \mathsf{CSR}(\aleph_2) \pm \mathsf{AP}(\aleph_2)$ are consistent.

Fairly straightforward, but provides a template. Other stuff with G., Levine, Stejskalova: Suslin Trees, continuum function, etc.

Theorem (G., Stejskalova)

 $\mathsf{TP}(\aleph_{\omega+2}) + \mathsf{CSR}(\aleph_{\omega+2}) \pm \mathsf{AP}(\aleph_{\omega+2})$ are consistent.

The third has a very different flavor:

Theorem (Ben-Neria, G.)

 $SATP(\aleph_2) + CSR(\aleph_2)$ is consistent.

- The first two theorems use Mitchell forcing (with anticipation for the $\neg AP$ cases).
- The second adds Prikry forcing and a new preservation theorem to the mix.
- The third result uses the machinery of exact strong residue functions (Neeman) to specialize trees after having added clubs.

Let's take a brief look at some varieties of Mitchell forcing. But first...

Mitchell developed a wonderful poset to prove that $TP(\omega_2)$ is consistent. A condition has two parts: one adds Cohen reals, and the other is responsible for collapsing cardinals between ω_1 and a weakly compact κ .

Later, Uri Abraham expanded the technique to obtain $TP(\omega_2) + TP(\omega_3)$ by adding a third component:

This ensures the preservation of TP(ω₂) by further reasonable forcing. (The Universe does not like to be surprised.)

Let's take a look at the rough definition:

Mitchell Forcing with Anticipation (v1)

Say κ regular and $\lambda > \kappa$ weakly compact. Let $\mathfrak{l} : \lambda \to V_{\lambda}$ be arbitrary (this is a "guessing function"; more in two slides). Conditions in $\mathbb{M}_{\mathfrak{l}}(\kappa, \lambda)$ are triples (p, q, r) where

- $p \in Add(\kappa, \lambda)$ (Cohen forcing);
- $|\operatorname{dom}(q)| \leq \kappa$ consists of inaccessibles in (κ, λ) , and for all $\alpha \in \operatorname{dom}(q)$, $q(\alpha)$ works to add a Cohen subset of κ^+ in the $\mathbb{M}_{\mathfrak{l}}(\kappa, \alpha)$ -extension;
- $|\operatorname{dom}(r)| \leq \kappa$ consists of inaccessibles in (κ, λ) . IF $\gamma \in \operatorname{dom}(r)$ and $\mathfrak{l}(\gamma)$ names a κ^+ -closed poset in the $\mathbb{M}_{\mathfrak{l}}(\kappa, \gamma)$ -extension, then $r(\gamma)$ is an element of $\mathfrak{l}(\gamma)$. o/w trivial.

Note

 $\mathbb{M}_{\mathfrak{l}}(\kappa,\lambda)$ forces $\mathsf{TP}(\lambda)$, $\mathsf{AP}(\lambda)$, and $\lambda = 2^{\kappa} = \kappa^{++}$. The " \mathfrak{l} " is not necessary here.

Mitchell Forcing with Anticipation (v2)

The previous version forces AP(λ). The witnesses to AP(λ) are added by the *q* part which collapses frequently.

(*) To get $\neg AP(\lambda)$, we need to collapse sparsely:

Definition

 $\mathbb{M}^*_{\mathfrak{l}}(\kappa,\lambda)$ has the same definition as $\mathbb{M}_{\mathfrak{l}}(\kappa,\lambda)$, but with the domain of q restricted to inaccessibles in (κ,λ) which are not limits of inaccessibles.

Note

 $\mathbb{M}^*_{\mathfrak{l}}(\kappa, \lambda)$ forces $\mathsf{TP}(\lambda)$, $\neg \mathsf{AP}(\lambda)$, and $\lambda = 2^{\kappa} = \kappa^{++}$. This needs the " \mathfrak{l} " to make further forcing give CSR.

 λ is assumed to be weakly compact. We use the "Poor Man's Measurable" definition.

Definition (sketchy)

For "many" transitive M of size λ , there exists N transitive of size λ and an elementary $k : M \to N$ with $\operatorname{crit}(k) = \lambda$.

Hamkins showed (using Woodin's \mathbb{F}_{λ}) that if λ is weakly compact, then in some extension λ also has a nice guessing property.

Definition

 $\mathfrak{l}: \lambda \to V_{\lambda}$ is a *weakly compact Laver diamond* if for any such M, and any $A \in H(\lambda^+)$, there exists $k: M \to N$ with $k(\mathfrak{l})(\lambda) = A$.

Goal: give a general flavor for the ideas.

Assumptions (more later)

Work over a model of GCH in which λ is weakly compact and has a weakly compact Laver diamond $\mathfrak{l}.$

We'll do two rounds:

- Round 1: $TP(\aleph_2) + CSR(\aleph_2) \pm AP(\aleph_2)$;
- Solution Round 2: $TP(\kappa^{++}) + CSR(\kappa^{++}) \pm AP(\kappa^{++})$ where κ is singular of cofinality ω .

To build our model (TP, CSR, not AP), we force with

 $\mathbb{M}^*_{\mathfrak{l}}(\omega,\lambda) * \dot{\mathbb{C}}_{\lambda^+},$

where $\hat{\mathbb{C}}_{\lambda^+}$ is a name for a λ^+ -length iteration adding clubs which witness CSR (like Magidor did). Main things to show:

- **(**) \mathbb{C}_{λ^+} preserves the tree property and is λ -distributive.
- Hence forces CSR and also (by features of M^{*}_l) forces that AP fails.

We're going to focus on a central step common to almost all stages of the argument.

The Key Maneuver

By the λ^+ -chain condition, we can just look at $\mathbb{M}^*_{\mathfrak{l}} * \dot{\mathbb{C}}_{\alpha}$ for each $\alpha < \lambda^+$. Now we have an element of $H(\lambda^+)$.

- we place $\mathbb{M}_{l}^{*} * \dot{\mathbb{C}}_{\alpha}$ inside some transitive M of size λ ;
- ② apply weak compactness to generate an embedding k : M → N with crit(k) = λ and k(l)(λ) = Ċ_α;
- factor the forcing $k(\mathbb{M}^*_{\mathfrak{l}} * \dot{\mathbb{C}}_{\alpha})$.

A key point is that by using l, we get:

$$k(\mathbb{M}^*_{\mathfrak{l}} \ast \dot{\mathbb{C}}_{\alpha}) \cong \mathbb{M}^*_{\mathfrak{l}} \ast \dot{\mathbb{C}}_{\alpha} \ast \dot{\mathbb{M}}^{\mathsf{tail}} \ast k(\dot{\mathbb{C}}_{\alpha}).$$

(*) This is necessary in order to extend the domain of k to the generic extension of M and in turn, complete the arguments.

Preservation properties of the tail forcing

Preservation properties of \mathbb{M}^{tail} finish the argument. \mathbb{M}^{tail} ...

- **1** won't add branches to λ -trees; this gives TP.
- Preserves stationary subsets of λ ∩ cof(ω); this gives distributivity of C_α, and (eventually) CSR.
- Solution won't collapse λ until after 2^ω > λ; this ensures (modulo the actual argument...) that AP fails.

A Template

This fairly straightforward argument forms a template for much more involved ones.

Larger Large Cardinals

Next up: near a singular cardinal of cofinality ω .

(*) Now a large cardinal κ will play the role of ω from Round 1. We will singularize κ using "vanilla" Prikry forcing.

We need to singularize κ after $\mathbb{M}^*_{\mathfrak{l}}(\kappa, \lambda)$, so we need that this Mitchell forcing preserves the measurability of κ .

Large Cardinal Assumption

Take κ to be indestructibly supercompact and $\lambda > \kappa$ weakly compact.

Let U be a $\mathbb{M}^*_{\mathfrak{l}}(\kappa, \lambda)$ -name for a normal measure on κ , and we will force with:

 $\mathbb{M}^*_{\mathfrak{l}}(\kappa,\lambda)*(\operatorname{Prikry}(\dot{U})\times\dot{\mathbb{C}}_{\lambda^+}).$

- This forcing is the same as doing the Prikry forcing after the club-adding (by the λ -distributivity).
- But we don't want to do $\dot{\mathbb{C}}_{\lambda^+}$ as computed in $\mathbb{M}^*_{\mathfrak{l}} * \mathsf{Prikry}(\dot{U})$.

What does Prikry do to CSR?

We need to know that the Prikry forcing preserves the principle CSR, since the iteration $\dot{\mathbb{C}}_{\lambda^+}$ doesn't consider stationary sets added by the Prikry forcing.

There are plenty of other details, but we'll focus on just this one bit:

Theorem (G)

If \mathbb{P} is κ^+ -c.c. and κ^+ -linked, then \mathbb{P} preserves $CSR(\kappa^{++})$. In particular, the result holds if \mathbb{P} is κ -linked (ex: Vanilla Prikry with collapses...).

Recall that \mathbb{P} is μ -linked if there is a partition $\langle \mathbb{P}^{\gamma} : \gamma < \mu \rangle$ of \mathbb{P} so that for each $\gamma < \mu$, any two elements of \mathbb{P}^{γ} are compatible in \mathbb{P} .

• Note that there are μ -cells, not $< \mu$ -cells.

Let \dot{S} be a \mathbb{P} -name for a stationary subset of $\kappa^{++} \cap \operatorname{cof}(\leq \kappa)$, and let $\langle \mathbb{P}^{\nu} : \nu < \kappa^{+} \rangle$ witness that \mathbb{P} is κ^{+} -linked. Let $\varphi : \mathbb{P} \longrightarrow \kappa^{+}$ be the function so that $p \in \mathbb{P}^{\varphi(p)}$ for all $p \in \mathbb{P}$.

For each $\nu < \kappa^+$, let ("trace of stems" idea)

$$T_{\boldsymbol{\nu}} := \left\{ \alpha < \kappa^{++} : (\exists \boldsymbol{p} \in \mathbb{P}^{\boldsymbol{\nu}}) \ \left[\boldsymbol{p} \Vdash \alpha \in \dot{\boldsymbol{S}} \right] \right\}.$$

We say ν is **strong** if T_{ν} is stationary; note that $T_{\nu} \subseteq \kappa^{++} \cap \operatorname{cof}(\leq \kappa)$.

Proof of the Preservation Theorem

Claim: for any $p \in \mathbb{P}$, there is $q \leq p$ with $\varphi(q)$ strong.

Proof.

Fix p, and let G be V-generic containing p. Observe that

$$\dot{S}[G] \subseteq \bigcup \left\{ T_{\varphi(r)} : r \leq p \land r \in G \right\}.$$

But on the RHS, we have at most κ^+ -many sets, and $\dot{S}[G]$ is stationary. So there is some $q \leq p$ with $q \in G$ so that $T_{\varphi(q)}$ is stationary in V[G]. But $T_{\varphi(q)}$ is in V, so it's stationary in V.

For each $\nu < \kappa^+$ so that ν is strong, let $C_{\nu} \subseteq \kappa^{++}$ be a club so that for all $\delta \in C_{\nu} \cap cof(\kappa^+)$, T_{ν} reflects at δ . Set

$$C:=\bigcap\left\{C_{\nu}:\nu \text{ is strong}\right\}.$$

Now we have our ingredients. We claim that \mathbb{P} forces that \hat{S} reflects at every $\delta \in C \cap cof(\kappa^+)$. Supposing otherwise, we may find (i) a condition $p \in \mathbb{P}$, (ii) a specific ordinal $\delta \in C \cap cof(\kappa^+)$, and (iii) a club subset D of δ in V so that

 $p \Vdash \delta \cap \check{D} \cap \dot{S} = \emptyset.$

Let $q \leq p$ so that $\varphi(q)$ is strong. Then $\delta \in C \subseteq C_{\varphi(q)}$, and so $T_{\varphi(q)}$ reflects at δ . Thus pick $\alpha \in D \cap T_{\varphi(q)} \cap \delta$. Then there is some $r \in \mathbb{P}^{\varphi(q)}$ so that $r \Vdash \alpha \in \dot{S}$. But $q, r \in \mathbb{P}^{\varphi(q)}$. So they are compatible in \mathbb{P} .

Let $u \leq q, r$. Then $u \Vdash \alpha \in \delta \cap \check{D} \cap \dot{S}$, which contradicts the fact that p forces that this intersection is empty.

- Double successors of singulars of countable cofinality, from optimal LCs (need short EBFs; I can do these with "objects");
- Double successors of singulars of uncountable cofinality (need Radin forcing);
- Multiple cardinals, ℵ₂ and ℵ₃ as a test case (note: can't have CSR on two successive cardinals simultaneously!)
- Is CSR(ℵ₂) consistent with "club isomorphisms of Aronszajn trees" on ℵ₂?

Thanks for listening!