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1. What is a black hole?
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Minkowski space
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Minkowski space
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Stars in General Relativity
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Star collapsing to a black hole

SEPTEMBER 1, 1939 " PHYSICAL REVIEW ~ VOLUME 56

On Continued Gravitational Contraction

J. R. OpPENHEIMER AND H. SN‘YDER
University of California, Berkeley, California

(Received July 10, 1939)

When all thermonuclear sources of energy are exhausted a sufficiently heavy star will
collapse. Unless fission due to rotation, the radiation of mass, or the blowing off of mass by
radiation, reduce the star’s mass to the order of that of the sun, this contraction will continue
indefinitely. In the present paper we study the solutions of the gravitational field equations
which describe this process. In I, general and qualitative arguments are given on the
behavior of the metrical tensor as the contraction progresses: the radius of the star ap-
proaches asymptotically its gravitational radius; light from the surface of the star is pro-
gressively reddened, and can escape over a progressively narrower range of angles. In II, an
analytic solution of the field equations confirming these general arguments is obtained for the
case that the pressure within the star can be neglected. The total time of collapse for an ob-
server comoving with the stellar matter is finite, and for this idealized case and typical stellar
masses, of the order of a day; an external observer sees the star asymptotically shrinking to
its gravitational radius.



Star collapsing to a black hole
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Schwarzchild spacetime

Iei m — O

7 = 0 (singularity)

r = 0 (singularity)

= 2
It R
r=0 Ci o
(coordinate ) '
singularity) l

r = 0 (singularity)

r r

-1
_<1 — 2_M> dr?* + <1 _2_M> dr® + I’z(dez + Siﬂ29d¢2)

—Q(U, V)dUAV + rX(U, V)(dO? + sin? 8 d¢p?)



2. What makes a black hole "extremal”?



Reissner-Nordstrom and Kerr
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Surface gravity
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Extremal black holes
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3. Can non-extremal black holes become extremal?



Black hole thermodynamics

The Four Laws of Black Hole Mechanics

J. M. Bardeen*
Department of Physics, Yale University, New Haven, Connecticut, USA

B. Carter and S. W. Hawking
Institute of Astronomy. University of Cambridge, England

Received January 24, 1973

Abstract. Expressions are derived for the mass of a stationary axisymmetric solution
of the Einstein equations containing a black hole surrounded by matter and for the
difference in mass between two neighboring such solutions. Two of the quantities which
appear in these expressions, namely the area A of the event horizon and the *‘surface
gravity "k of the black hole, have a close analogy with entropy and temperature respectively.
This analogy suggests the formulation of four laws of black hole mechanics which corre-
spond to and in some ways transcend the four laws of thermodynamics.

Commun. math. Phys. 31, 161-170 (1973)
(© by Springer-Verlag 1973



The “third law” paradigm

The Four Laws of Black Hole Mechanics

J. M. Bardeen*
Department of Physics, Yale University, New Haven, Connecticut, USA

B. Carter and S. W. Hawking
Institute of Astronomy. University of Cambridge, England

Extending the analogy even further one would postulate:

The Third Law

It 1s impossible by any procedure, no matter how idealized, to reduce
k to zero by a finite sequence of operations.

“Extremal black holes are a physically inaccessible ideal limit”
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The “third law” paradigm

~ Another reason for believing the third
law 1s that if one could reduce k to zero by a finite sequence of operations,
then presumably one could carry the process further, thereby creating
a naked singularity. If this were to happen there would be a breakdown
of the assumption of asymptotic predictability which is the basis of many
results in black hole theory, including the law that A cannot decrease.



The third law is false!

arX1v:2211.15742v1 [gr-qc

Gravitational collapse to extremal black holes
and the third law of black hole thermodynamics

Christoph Kehle*! and Ryan Unger'?

! Institute for Theoretical Studies € Department of Mathematics, ETH Zirich, 8092 Ziirich, Switzerland

2 Department of Mathematics, Princeton University,
Washington Road, Princeton NJ 08544, United States of America



The third law is false!

Theorem 1. Subextremal black holes can become extremal in finite time, evolving from regular initial data.
In fact, there exist regular one-ended Cauchy data for the Einstein—-Mazwell-charged scalar field system which
undergo gravitational collapse and form an exactly Schwarzschild apparent horizon, only for the spacetime
to form an exactly extremal Reissner—Nordstrom event horizon at a later advanced time.

In particular, the “third law of black hole thermodynamics” is false.
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4. How exceptional are extremal black holes and what
do dynamics look like nearby?



Back to Schwarzschild

Theorem 1.3.1 (The nonlinear asymptotic stability of Schwarzschild in full co-dimension). For all charac-
teristic initial data prescribed on (1.3.2), assumed sufficiently close to Schwarzschild data with mass Mip

and lying on a codimension-3 “submanifold” Msiaple of the moduli space IMN of initial data, the mazximal

Cauchy development M contains a region R which can be covered by appropriate (teleologically normalised)
global double null gauges (1.1.1) and which

(i) possesses a complete future null infinity T such that R C J~(Z1), and in fact the future boundary of
R in M is a regqular, future affine complete “event horizon” H™. Moreover,

(ii) the metric remains close to the Schwarzschild metric with mass M, in R (moreover, measured with
respect to an energy at the same order as a suitable “initial” energy), and

(1i1) asymptotes, inverse polynomially, to a Schwarzschild metric with mass Mgna =~ Minit as u — 00 and
v — 00, tn particular along T+ and H™.

[M.D.—Holzegel-Rodnianski-Taylor, 2021]
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Could a similar statement hold for extremal black holes?



Problem:
the Aretakis instability

ADV. THEOR. MATH. PHYS.
Volume 19, Number 3, 507%530, 2015

Horizon instability of extremal black holes

STEFANOS ARETAKIS

We show that axisymmetric extremal horizons are unstable under
scalar perturbations. Specifically, we show that translation invari-
ant derivatives of generic solutions to the wave equation do not
decay along such horizons as advanced time tends to infinity, and
in fact, higher order derivatives blow up. This instability holds in
particular for extremal Kerr—-Newman and Majumdar—Papapetrou
spacetimes and is in stark contrast with the subextremal case for
which decay is known for all derivatives along the event horizon.

This result provides a entirely new aspect of the evolution of
solutions to the wave equation along degenerate horizons and has
a wealth of new applications.



Weak stability

Nonetheless, in the case of extremal Reissnher-Nordstrom
we have weak stability results.

In particular, we have boundedness and decay results away from the horizon:

Instability of gravitational and electromagnetic perturbations of
extremal Reissner—Nordstrom spacetime

Marios Antonios Apetroaie *

Theorem. (Rough version) Let a,f, 5 and a, f,é be solutions to the generalized Teukolsky
system of + spin on the extreme Reissner—Nordstrom exterior, and let Y denote a transversal
invariant derivative, then for generic initial data

i) Away from the event horizon H = {r = M}, i.e. {r > ro} for any ro > M, Teukolsky
solutions decay with respect to the time function of a suitable foliation of the exterior,

ii) The following pointwise decay, non-decay and blow-up estimates hold asymptotically along
the event horizon H* !

(a) For the positive spin solutions, we have
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It gets worse for Kerr:
Azimuthal instabilities

AZIMUTHAL INSTABILITIES ON EXTREMAL KERR

DEJAN GAJIC

ABSTRACT. We prove the existence of instabilities for the geometric linear wave equation on ex-
tremal Kerr spacetime backgrounds, which describe stationary black holes rotating at their maxi-
mally allowed angular velocity. These instabilities can be associated to non-axisymmetric azimuthal
modes and are stronger than the axisymmetric instabilities discovered by Aretakis in [Arel5]. The
existence of non-axisymmetric instabilities follows from a derivation of very precise stability prop-
erties of solutions: we determine therefore the precise, global, leading-order, late-time behaviour of
solutions supported on a bounded set of azimuthal modes via energy estimates in both physical and
frequency space. In particular, we obtain sharp, uniform decay-in-time estimates and we determine
the coefficients and rates of inverse-polynomial late-time tails everywhere in the exterior of ex-
tremal Kerr black holes. We also demonstrate how non-axisymmetric instabilities leave an imprint
in the radiation on future null infinity via the coefficients appearing in front of slowly decaying and
oscillating late-time tails.



Weak stability
for extremal Kerr?

For extremal Kerr, outside of axisymmetry,
the only positive stability result is mode stability

Commun. Math. Phys. 378, 705-781 (2020)

. : / : Communications in
Digital Object Identifier (DOI) https://doi.org/10.1007/s00220-020-03796-z

Mathematical
Physics

Mode Stability for the Teukolsky Equation on Extremal
and Subextremal Kerr Spacetimes

Rita Teixeira da Costa

Department of Pure Mathematics and Mathematical Statistics, University of Cambridge, Wilberforce Road,
Cambridge CB3 OWA, UK. E-mail: rita.t.costa@dpmms.cam.ac.uk

In particular, even for the scalar wave equation,
the following most basic stability question remains open:

Do solutions of [ ], = () remain bounded
in the exterior of subextremal Kerr?




A stability conjecture?

Conjecture IV.2 (Asymptotic stability of extremal Reissner-Nordstrom but with growing horizon “hair”).
For all characteristic initial data for the Einstein—Mazwell system prescribed on (1.3.2), assumed sufficiently
close to extremal Reissner—Nordstrom data with mass Miniy and Qinit = Minit and lying on a codimension-4
“submanifold” Msiabie of the moduli space M of initial data, the maximal Cauchy development M contains a
region R which can be covered by appropriate (teleologically normalised) global double null gauges (1.1.1) and
where the analogues of (i), (ii) and (i) of Theorem 1.8.1 are satisfied with an extremal Reissner—Nordstréom
metric with parameters Mgna = Qgnal 0 the place of Schwarzschild. Along H™', however, one has decay to
extremal Reissner—Nordstrom only in a weaker sense, in particular, for generic data lying on Mgiap1e, Suitable
higher order quantities in the arising solution blow up polynomially along H™ (growing horizon “hair”).

[M.D.—Holzegel-Rodnianski-Taylor, 2021]
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(Of course, one can already conjecture the analogue
of Conjecture IV.2 for extremal Kerr as a family of the Einstein vacuum equations; we emphasise, however,
that the dynamics near this phase transition in that case may be considerably more complicated!)



A stability conjecture?

Conjecture IV.2 (Asymptotic stability of extremal Kerr ‘but with growing horizon “hair”).
For all characteristic initial data for the Einstein vacuum equations prescribed on (1.3.2), assumed sufficiently
close to extremal Kerr data with mass Minix and ay;, = Miniy and lying on a codimension- 1

“submanifold” Mgianie of the moduli space MM of initial data, the mazximal Cauchy development M contains a
region R which can be covered by appropriate (teleologically normalised) global double null gauges (1.1.1) and
where the analogues of (i), (ii) and (iii) of Theorem 1.8.1 are satisfied with an extremal Kerr

metric with parameters Mgn. = a,, n the place of Schwarzschild. Along H*, however, one has decay to
extremal . Kerr only in a weaker sense, in particular, for generic data lying on Mgiaple, Suitable
higher order quantities in the arising solution blow up polynomially along H* (growing horizon “hair”).



A stability conjecture?

Let's say that we believe the codimension-1 stability conjecture:
For extremal Kerr and there exists a codimension-1 submanifold 9.1
of moduli space consisting of solutions asymptotic back to extremal Kerr.

What does this submanifold 0., . separate?

Moreover, one could hope
to prove that this submanifold M, ., ,. delimits the boundary signifying a phase transition between two
very different open regions of moduli space 9M: (1) the set of data leading to spacetimes failing to collapse
(i.e. those for which Cj, C J~(Z7)) and (2) the set of data leading to a black hole exterior settling down
to a subextremal Kerr
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Moreover, a sufficient condition to lie on the right hand side
is the presence of a single trapped or marginally trapped surface.



5. Epilogue: A new picture of the moduli space of
gravitational collapse
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(Update of 1rr-1999-4) in relativity

Critical Phenomena in Gravitational Collapse

Carsten Gundlach

School of Mathematics
University of Southampton
Southampton SO17 1BJ, UK
email: cjg@soton.ac.uk
http://www.soton.ac.uk/~cjg

José M. Martin-Garcia
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Figure 1: The phase space picture for the black hole threshold in the presence of a critical point. Every
point correspond to an initial data set, that is, a 3-metric, extrinsic curvature, and matter fields. (In
type II critical collapse these are only up to scale). The arrow lines are solution curves, corresponding to
spacetimes, but the critical solution, which is stationary (type I) or self-similar (type II) is represented by
a point. The line without an arrow is not a time evolution, but a 1-parameter family of initial data that
crosses the black hole threshold at p = p.. The 2-dimensional plane represents an (oo — 1)-dimensional
hypersurface, but the third dimension represents really only one dimension.



Moduli space of gravitational collapse




arXiv:2402.10190v1 [gr-qc] 15 Feb 2024

Extremal black hole formation as a critical phenomenon

Christoph Kehle*! and Ryan Unger?

Theorem. Extremal black holes occur at the threshold of black hole
formation: There exist one-parameter families of initial data for the
Einstein-Maxwell-charged Vlasov system interpolating between
collapse and dispersion where the critical solution is a spacetime
collapsing to an extremal Reissner-Nordstrom solution.

dispersing spacetimes

Minkowski space




Moduli space of gravitational collapse
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