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History: arithmetic and geometric progressions

Given two sets A, B in a field K, we define
» their sumset A+ B={a+b:ac A bc B}
» their productset A-B={a-b:ac A bec B}

Example
Let A, :={1,2,...,n}.
> A+ Al =2|A0 —1=0(|An).
» Let 7 (n) be the number of primes in A,. As the product of
any two primes is unique up to permutation, by the Prime

Number Theorem we have
An- Al > 3 (n)? =Q (]A,,\Z_O(l)).



History: sum-product phenomenon

» This generalizes to arbitrary arithmetic progressions: their
sumsets are as small as possible, and productsets are as large
as possible.

» For a geometric progression, the opposite holds: productset is
as small as possible, sumset is as large as possible.

» These are the two extreme cases of the following result.

» [ErdGs, Szemerédi] There exists some ¢ € R+ such that: for
every finite A C R,

max {|A+ Al,|A-Al} = Q (\A|l+c> .

» Conjecture (widely open): holds with exponent 2 — ¢ for any
e>0.



Elekes: generalization to polynomial expansion

» Since polynomials combine addition and multiplication, a
“typical” polynomial f € R [x, y] should satisfy

[f (Ax B)| =Q(n"")

for some ¢ = ¢ (f) and all finite A, B C R with |A| = |B| = n.
» Doesn't hold when only one of the operations occurs between
the two variables:
> fis additive, i.e. f(x,y)=g(h(x)+i(y)) for some
univariate polynomials g, h, i
(as then |f (A x B)| = O(n) for A, B such that h(A),i(B)
are arithmetic progressions).
> fis multiplicative, i.e. f(x,y) =g (h(x)-i(y)) for some
univariate polynomials g, h, i
(as then |f (A x B)| = O(n) for A, B such that h(A),i(B)
are geometric progressions).



Elekes-Rényai

» But these are the only exceptions!

> [Elekes, Ronyai] Let f € R[x, y] be a polynomial of degree d
that is not additive or multiplicative. Then for all A,B C R
with |A| = |B| = n one has

If (A x B)| = Qq (n%) .

» The improved bound and the independence of the exponent
from the degree of f is due to [Raz, Sharir, Solymosi].

» Analogous results hold with C instead of R (and slightly worse
bounds).

» The exceptional role played by the additive and multiplicative
forms suggests that (algebraic) groups play a special role —
made precise by [Elekes, Szabd].



Elekes-Szabé theorem

» [Elekes-Szab6'12] provide a conceptual generalization: for any
algebraic surface R(x1,x2,x3) C R3 so that the projection
onto any two coordinates is finite-to-one, exactly one of the
following holds:

1. (power saving) there exists v > 0 s.t. for any finite A; C, R
we have
RN (A x Az x A3)| = O(n*™7).
2. (locally equivalent to a group) There exist open sets U; C R
and V C R containing 0, and analytic bijections with analytic
inverses m; : U; — V such that

7T1(X1) + 7T2(X2) + 7T3(X3) =0« R(Xl,X27X3)

for all x; € U..

» Alternative regime: working over C, for R irreducible get that
it is in coordinate-wise finite-to-finite algebraic correspondence
with the graph of addition on a 1-dimensional algebraic group.

» If f(x1,x2,x3) = x3 — X1 — X2, arithmetic progressions witness
no power saving.



Generalizations of the Elekes-Szabé theorem

Let R C X; X ... x X, be a (semi-)algebraic variety with
finite-to-one projection onto any r — 1 coordinates, dim(X;) = m.

1.

[Elekes, Szab6'12] r = 3, any m (grids in general position,
correspondence with a complex algebraic group of dim = m);
[Raz, Sharir, de Zeeuw'18] r =4, m=1;

[Raz, Shem-Tov'18] m =1, R of the form f(x1,...,x,—1) = X;
[Hrushovski'13] Pseudofinite dimension, connection to
modularity of certain matroids;

Related work: [Raz, Sharir, de Zeeuw'15], [Wang'15]; [Bukh,
Tsimmerman' 12], [Tao'12]; [Jing, Roy, Tran'19];

[Bays, Breuillard’'18] any r and m, any co-dim over C,
recognized that groups are abelian — but no bounds on ~;
[C., Peterzil, Starchenko'21] Any r and m, any R definable in
an o-minimal structure and explicit bounds on 7.

[Bays, Dobrowolski, Zou'21] Relaxing general
position/abelianity to nilpotence in special cases.

. [C., Peterzil, Starchenko'24] Any r, m, any co-dim, bounds.



One-dimensional semi-algebraic case

Theorem (C., Peterzil, Starchenko)

Assume r > 3, R C R" s semi-algebraic, such that the projection
of R to any r — 1 coordinates is (generically) finite-to-one. Then
exactly one of the following holds.

1. For any finite A; C, R, i € [r], we have
IRA (AL % ... x A)| = O (n"277)

where v = % ifr>4, and v = % ifr=3.
2. There exist open sets U; C R, i € [r], an open set V C R
containing 0, and homeomorphisms w; : U; — V such that

771(X1) +e +7Tr(Xr) =0« R(Xla ce 7Xr)

for all x; € U;,i € [r].



Grids in general position

> When R C X; x ... x X, with dim(X;) = m > 1, it is
necessary to restrict to grids in general position.

» Aset AC X;isin (D,v)-general position if |[ANY| < v for
every algebraic subset Y C X with dimension < m and degree
<D.

» Agrid A= A; x ... x A, isin (D, v)-general position if each
A; C X; is in (D, v)-general position.

» Example: if m =1 and D is fixed, then for v large enough
every set A C Cis in (D, v)-general position.



General semi-algebraic case

Theorem (C., Peterzil, Starchenko)

Assume r > 3, R C Xy X - -+ x X, are semi-algebraic with

dim (X;) = m, and the projection of R to any r — 1 coordinates is
finite-to-one. Then one of the following holds.

1. There exists D = D(R) such that for any v and any finite
A; Cp X; in (D, v)-general position, i € [r], we have

RN (AL % ... x A)| = Og, (n"177),

for v = ﬁ ifs>4, and v = m ifs =3.

2. There exist semialgebraic relatively open sets U; C X;, i € [s],
an abelian Lie group (G, +) of dimension m and an open
neighborhood V C G of 0, and semi-algebraic
homeomorphisms 7t; : U; — V/, i € [s], such that for all
xi € Uj,i € [S]

7r1(X1) T+ +7TS(XS) =0« R(Xla ce :Xs)'



Remarks

1. In fact, our theorem is for R definable in an arbitrary
o-minimal expansion of R — so R can be defined not only
using polynomial (in-)equalities, but also e.g. using e and
restricted analytic functions. Recently generalized to arbitrary
co-dimension (this is codim 1 case).

2. We also have an analog over algebraically closed fields of
characteristic 0 (here we get a finite-to-finite correspondence
with an algebraic group), and more generally for differentially
closed fields, etc.

3. One ingredient — improved Szemeredi-Trotter style incidence
bounds in o-minimal structures ([Basu, Raz], [C., Galvin,
Starchenko]).

4. Another — a higher arity generalization of the (abelian) Group
Configuration theorem of Zilber and Hrushovski on recognizing
groups from a “generic chunk” (and more generally — local
version of the coordinatization of projective geometries). We
discuss a simple purely combinatorial special case:



First ingredient: Recognizing groups, 1

1. Assume that (G, +,0) is an abelian group, and consider the
r-ary relation R C Hie[r] G given by x; + ...+ x, = 0.

2. Then R is easily seen to satisfy the following two properties,
for any permutation of the variables of R:

Vx1, .o, Vo1 A R(X1, ooy Xp ), (P1)
Vx1, xVys, ... Y VYS, ,y;(R(i,y) AR(x,7) — (P2)

(Vx1, 3 R(X', 7) > R()?’,y/)))

We show a converse, assuming r > 4:



Recognizing groups, 2

Theorem (C., Peterzil, Starchenko)

Assume r € N>4, X1,..., Xy, and R C Hl-e[r] X; are sets, so that R
satisfies (P1) and (P2) for any permutation of the variables. Then
there exists an abelian group (G, +,0¢) and bijections 7w; : X; — G
such that for every (a1,...,a,) € Hie[r] X; we have

R(a1,...,a;) <= mi(a1) +...+ 7 (ar) = 0¢.

> If Xy =...= X, property (P1) is equivalent to saying that
the relation R is an (r — 1)-dimensional permutation on the
set Xy, or a Latin (r — 1)-hypercube, as studied by Linial and
Luria. Thus the condition (P2) characterizes, for r > 3, those
Latin r-hypercubes that are given by the relation
“X1+ ...+ x—1=x/"in an abelian group.

> If R is semi-algebraic and X; are semi-algebraic, then G and 7;
can be chosen semi-algebraic as well.



Some remarks

» For r =4, and fixed a3, as, R(x1, x2, a3, a4) is the graph of a
bijection f5, 4, : X1 — X2 by (P1).

> Let F = {fa.a, : (33,34) € X3 x Xy}.

> Fixany fy € F. For f,f' € F,let f +f :=fofylof

» Then one shows (F,+) is an abelian group with identity f
using (P2) for various permutations of the coordinates.

» In the general case, have to work with only generically defined
finite-to-finite correspondences (in o-minimal — on
infinitesimal neighborhoods in some non-standard extension of
R), and the group is built on their germs.



Counting edges in bipartite graphs

> Let G = (A, B,!I) with | C A x B be a bipartite graph.

» For k € N, let Ky x be the complete bipartite graph with each
part of size k. Cauchy-Schwarz gives you:

Fact

[Kévari, Sos, Turan, '54] For each k € N there is some ¢ € R such
that: for any bipartite graph G and A C U, B C V with

|A| = |B| = n, if I (A, B) is Ky x-free, then |I (A, B)| < cn® k.

> So if G is Kpo-free, then |/ (A, B)| = O(n%).
» Optimal up to a constant! Witnessed by the point—line
incidence graph on the affine plane over Fpn as n — oo.



Example: point-line incidences on the plane

> Let /| C R? x R? be the incidence relation between points and
lines on the real plane, i.e.

I(x1,%2; y1,¥2) <= X2 = y1x1 + y2.
» Then [ is semialgebraic and K3 »-free (for any two points
belong to at most one line, and vice versa).

» Utilizing the geometry of the reals (cell decomposition /
polynomial method):

Fact (Szémeredi-Trotter '83)

For A a set of n points and B a set of n-lines,

I(A, B)| = o(n%).

» Importantly: % < %



Second ingredient: better “incidence bounds” in o-minimal
structures

» Szémeredi-Trotter theorem has numerous generalizations for
semialgebraic graphs, e.g. [Pach, Sharir'98], [Elekes,
Szab6'12], [Fox, Pach, Sheffer, Suk, Zahl '15], and to
o-minimal structures:

Theorem (C., Galvin, Starchenko'16)

If I C U x V is a binary relation definable in a distal structure M
(includes o-minimal structures, but also e.g. Qp) and E is

K> 2-free, then there is some § > 0 such that: for all
AC,U,BC,V wehave|lNAx B| =0(n37%).

» The power saving 7 in the main theorem can be estimated
explicitly in terms of this 4.

» Explicit bounds on § are known in some special cases: for
E C M? x M? for an o-minimal M, also O(n%) ([C., Galvin,
Starchenko'16] or [Basu, Raz'16]) — optimal.



Recognizing fields

» For the semialgebraic K> >-free point-line incidence relation
R ={(x1,x2;y1,y2) € R* : x2 = y1x1 + yo} CR? x ]R24we
have the (optimal) lower bound |R N (V4 x Vo)| = Q(n3).

» To define it we use both addition and multiplication, i.e. the
field structure.

» This is not a coincidence — any non-trivial lower bound on the
exponent of R allows to recover a field from it:

Theorem (joint with A. Basit, S. Starchenko, T. Tao, C. Tran)

Assume that M = (M, <,...) is o-minimal and

R C Mg, X ... x My, is a definable relation which is Ky x-free,
but [R N []ien Vil # O(n"1) for V; Cp M. Then a real closed
field is definable in the first-order structure (M, <, R).



Ingredients

» Optimal Zarankiewicz bound for semilinear hypergraphs:

Theorem (BCSTT)

For any integers r > 2,5 > 0,k > 2 there are « = a(r,s, k) € R
and 8 = B(r,s) € N such that: for any finite Ki_ . -free semilinear
r-hypergraph H = (V4 ..., V,; E) with E C Hie[r] V; of
complexity < s we have

|E| < an"* (log n)” .

» In particular, |E| = O(n**¢) for r = 2 and any ¢ > 0.

» The trichotomy theorem for o-minimal structures from model
theory [Peterzil, Starchenko'98]: any non-trivial matroid
defined by algebraic closure in an o-minimal structure is either
locally modular (behaves like span in a vector space), or a real
closed field can be defined.

In a very special case: let X C R" be a semialgebraic but not
semilinear set. Then - [[g 12 is definable in (R, <, +, X).



Thank youl!
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